1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Feliz [49]
3 years ago
14

Someone please help me with finding the resistance of these circuits! I've been asking for an hour now. I will give brainliest i

f right!

Physics
1 answer:
vivado [14]3 years ago
8 0

Answer:

1. 59 Ω

2. 3 Ω

3. 0.625 kΩ

Explanation:

1. The total resistance in a series circuit is equal to the sum of the resistance.

R_T=R_1+R_2+R_3...\\R_T=20+19+20\\R_T=59

Therefore, the total resistance in the first circuit is 59 Ω.

2. The total resistance in a parallel circuit is equal to the sum of the reciprocals of the resistance.

\frac{1}{R_T} = \frac{1}{R_1} +\frac{1}{R_2} +\frac{1}{R_3} ...\\\frac{1}{R_T} = \frac{1}{6.0} +\frac{1}{12} +\frac{1}{36}+\frac{1}{18} \\\frac{1}{R_T} = \frac{1}{3} \\R_T=3

Therefore, the total resistance in the second circuit is 3 Ω.

3. This is another parallel circuit, so we use the same equation from above:

\frac{1}{R_T} = \frac{1}{R_1} +\frac{1}{R_2} +\frac{1}{R_3} ...\\\frac{1}{R_T} = \frac{1}{10} +\frac{1}{2} +\frac{1}{1} ...\\\frac{1}{R_T} =1.6\\R_T=\frac{1}{1.6}

Therefore, the total resistance in the third circuit is \frac{1}{1.6} kΩ, or 0.625 kΩ.

I hope this helps!

You might be interested in
A supply bag is dropped from a rescue plane. After the bag falls for 3.2 seconds , what is the velocity of the bag?
loris [4]

Answer: -31.36 m/s

Explanation:

This is a problem of motion in one direction (specifically vertical motion), and the equation that best fulfills this approach is:

V_{f}=V_{o}+a.t  (1)

Where:

V_{f} is the final velocity of the supply bag

V_{o}=0 is the initial velocity of the supply bag (we know it is zero because we are told it was "dropped", this means it goes to ground in free fall)

a=g=-9.8m/s^{2} is the acceleration due gravity (the negtive sign indicates the gravity is downwards, in the direction of the center of the Earth)

t=3.2s is the time

Knowing this, let's solve (1):

V_{f}=0+(-9.8m/s^{2})(3.2s)  (2)

Finally:

V_{f}=-31.36m/s  Note the negative sign is because the direction of the bag is downwards as well.

8 0
3 years ago
Why might scientists measure the mass of object rather than the weight of an object?
Marina CMI [18]
Because they have different measurements and weight and mass and some measurements are the same

3 0
3 years ago
A beam of protons enter the electric field of magnitude E = 0.5 N/C between a pair of parallel plates. There is a magnetic field
HACTEHA [7]

Answer:

0.217 m/s

Explanation:

The protons in the beam passes undeflected when the electric force is equal to the magnetic force:

qE = qvB

where

q is the proton's charge

E is the magnitude of the electric field

v is the speed of the protons

B is the magnitude of the magnetic field

Re-arranging the equation,

v=\frac{E}{B}

And by substituting

E = 0.5 N/C

B = 2.3 T

We find

v=\frac{0.5}{2.3}=0.217 m/s

3 0
3 years ago
A 62 kg bungee jumper jumps from a bridge. She is tied to a bungee cord whose unstretched length is 12 m. She falls a total of 3
Andrew [12]

Answer:

k = 104.46 N/m

Explanation:

Here we can use energy conservation

so we will have

initial gravitational potential energy = final total spring potential energy

as we know that she falls a total distance of 31 m

while the unstretched length of the string is 12 m

so the extension in the string is given as

x = L - L_o

x = 31 - 12 = 19 m

so we have

mgH = \frac{1}{2}kx^2

62(9.81)(31) = \frac{1}{2}k (19^2)

k = 104.46 N/m

5 0
3 years ago
The efficiency of a device such as a lamp can be calculated using this equation:
loris [4]

efficiency = (useful energy transferred ÷ energy supplied) × 100

It's easy to use this formula, but we have to know both the useful energy and the energy supplied.  The drawing doesn't tell us the useful energy, so we have to find a clever way to figure it out.  I see two ways to do it:

<u>Way #1:</u>

We all know about the law of conservation of energy.  So we know that the total energy coming out must be  250J, because that's how much energy is going in.  The wasted energy is 75J, so the rest of the 250J must be the useful energy . . . (250J - 75J) = 175J useful energy.

(useful energy) / (energy supplied) =  (175J) / (250J) = <em>70% efficiency</em>

================================

<u>Way #2: </u>

How much of the energy is wasted ? . . . 75J wasted

What percentage of the Input is that 75J ? . . . 75/250 = 30% wasted

30% of the input energy is wasted.  That leaves the other <em>70%</em> to be useful energy.

6 0
3 years ago
Read 2 more answers
Other questions:
  • The net force on a rock is 250 newtons downward. The rock accelerates at a rate of 10 m/s2. What is the rock's mass?
    14·1 answer
  • Severe weather often includes destructive events such as Hurricanes and Tornadoes where air is moving much faster than usual. Tr
    6·2 answers
  • A 100-m-long wire carrying a current of 4.0 A will be accompanied by a magnetic field of what strength at a distance of 0.050 m
    13·1 answer
  • Two uncharged metal spheres, #1 and #2, are mounted on insulating support rods. A third metal sphere, carrying a positive charge
    8·1 answer
  • What is the name of the North Star?
    11·1 answer
  • If two similar large plates each of area having surface charge density is +a and -b are separated by a distance d in air find th
    10·1 answer
  • I need help with this problem​
    8·1 answer
  • Problem 18 if anyone could help that would be amazing!
    8·1 answer
  • 1. When red light shines on a red rose, what color do you see? Do the leaves become
    11·2 answers
  • PLS HELP ITS URGENT HELP PLSSS
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!