Answer:
The focal length of the appropriate corrective lens is 35.71 cm.
The power of the appropriate corrective lens is 0.028 D.
Explanation:
The expression for the lens formula is as follows;

Here, f is the focal length, u is the object distance and v is the image distance.
It is given in the problem that the given lens is corrective lens. Then, it will form an upright and virtual image at the near point of person's eye. The near point of a person's eye is 71.4 cm. To see objects clearly at a distance of 24.0 cm, the corrective lens is used.
Put v= -71.4 cm and u= 24.0 cm in the above expression.


f= 35.71 cm
Therefore, the focal length of the corrective lens is 35.71 cm.
The expression for the power of the lens is as follows;

Here, p is the power of the lens.
Put f= 35.71 cm.

p=0.028 D
Therefore, the power of the corrective lens is 0.028 D.
Explanation:
this is my answer this is helpful for you
An example of an environmental issue is the acid rain in Germany. The acid rain is caused by pollution. Pollution that was caused by car putting harmful gases into the air is the main reason that there is acid rain in Germany. This is a problem because the acid rain is destroying Germany’s forests. Hope this helped!
Nitrogen: 1s2, 2s2, 2p3 is correct answer.
Answer:
The distance of m2 from the ceiling is L1 +L2 + m1g/k1 + m2g/k1 + m2g/k2.
See attachment below for full solution
Explanation:
This is so because the the attached mass m1 on the spring causes the first spring to stretch by a distance of m1g/k1 (hookes law). This plus the equilibrium lengtb of the spring gives the position of the mass m1 from the ceiling. The second mass mass m2 causes both springs 1 and 2 to stretch by an amout proportional to its weight just like above. The respective stretchings are m2g/k1 for spring 1 and m2g/k2 for spring 2. These plus the position of m1 and the equilibrium length of spring 2 L2 gives the distance of L2 from the ceiling.