A male having the disease.
Answer: The coefficient of kinetic friction is μ = 0.6
Explanation:
For an object of mass M, the weight is:
W = M*g
where g is the gravitational acceleration: g = 9.8m/s^2
And the friction force between this object and the surface can be written as:
F = W*μ
where μ is the coefficient of friction (kinetic if the object is moving, and static if the object is not moving, usually the static coefficient is larger)
In this case, the weight is:
W = 20N
And the friction force is:
F = 12N
Replacing these values in the equation for the friction force we get:
12N = 20N*μ
(12N/20N) = μ = 0.6
The coefficient of kinetic friction is μ = 0.6
Answer:
m³/(kg⋅s²)
Explanation:
Hello.
In this case, since the involved formula is:

By writing a dimensional analysis with the proper algebra handling, we obtain:
![N[=]G*\frac{kg*kg}{m^2}\\ \\kg*\frac{m}{s^2}[=]G *\frac{kg*kg}{m^2}\\\\G[=]\frac{kg*m*m^2}{kg^2*s^2}\\ \\G[=]\frac{m^3}{kg*s^2}](https://tex.z-dn.net/?f=N%5B%3D%5DG%2A%5Cfrac%7Bkg%2Akg%7D%7Bm%5E2%7D%5C%5C%20%5C%5Ckg%2A%5Cfrac%7Bm%7D%7Bs%5E2%7D%5B%3D%5DG%20%2A%5Cfrac%7Bkg%2Akg%7D%7Bm%5E2%7D%5C%5C%5C%5CG%5B%3D%5D%5Cfrac%7Bkg%2Am%2Am%5E2%7D%7Bkg%5E2%2As%5E2%7D%5C%5C%20%5C%5CG%5B%3D%5D%5Cfrac%7Bm%5E3%7D%7Bkg%2As%5E2%7D)
Thus, answer is:
m³/(kg⋅s²)
Note that the [=] is used to indicate the units of G.
Best regards
Answer:
The percentage of its mechanical energy does the ball lose with each bounce is 23 %
Explanation:
Given data,
The tennis ball is released from the height, h = 4 m
After the third bounce it reaches height, h' = 183 cm
= 1.83 m
The total mechanical energy of the ball is equal to its maximum P.E
E = mgh
= 4 mg
At height h', the P.E becomes
E' = mgh'
= 1.83 mg
The percentage of change in energy the ball retains to its original energy,
ΔE % = 45 %
The ball retains only the 45% of its original energy after 3 bounces.
Therefore, the energy retains in each bounce is
∛ (0.45) = 0.77
The ball retains only the 77% of its original energy.
The energy lost to the floor is,
E = 100 - 77
= 23 %
Hence, the percentage of its mechanical energy does the ball lose with each bounce is 23 %
Answer:
she had socks one and was shuffeling so she had static
Explanation: