Answer:4.93 m/s
Explanation:
Given
height to reach is (h )1.24 m
here Let initial velocity is u
using equation of motion

here Final Velocity v=0
a=acceleration due to gravity




u=4.93 m/s
We can calculate this with the law of conservation of energy. Here we have a food package with a mass m=40 kg, that is in the height h=500 m and all of it's energy is potential. When it is dropped, it's potential energy gets converted into kinetic energy. So we can say that its kinetic and potential energy are equal, because we are neglecting air resistance:
Ek=Ep, where Ek=(1/2)*m*v² and Ep=m*g*h, where m is the mass of the body, g=9.81 m/s² and h is the height of the body.
(1/2)*m*v²=m*g*h, masses cancel out and we get:
(1/2)*v²=g*h, and we multiply by 2 both sides of the equation
v²=2*g*h, and we take the square root to get v:
v=√(2*g*h)
v=99.04 m/s
So the package is moving with the speed of v= 99.04 m/s when it hits the ground.
C. when the circuit is closed
Answer:
Explanation:
Let c be the circumference and r be the radius
c = 2πr , r = c / 2π , area A = π r² = π (c/2π )² = (1/4π) x c²
flux (ψ) = BA = 1 X 1/4π X c²
dψ/dt = 1/4π x 2c dc/dt =1/2π x c x dc/dt
at t = 8 s
c = 161 - 13 x 8 = 57 cm , dc/dt = 13 cm/s
e = dψ/dt = (1 / 2π )x 57 x 13 x 10⁻⁴ = 118 x 10⁻⁴ V.
Answer: 
Explanation:
The Compton Shift
in wavelength when the photons are scattered is given by the following equation:
(1)
Where:
is a constant whose value is given by
, being
the Planck constant,
the mass of the electron and
the speed of light in vacuum.
the angle between incident phhoton and the scatered photon.
We are told the maximum Compton shift in wavelength occurs when a photon isscattered through
:
(2)
(3)
Now, let's find the angle that will produce a fourth of this maximum value found in (3):
(4)
(5)
If we want
,
must be equal to 1:
(6)
Finding
:
Finally:
This is the scattering angle that will produce