Answer: Volume occupied by given neon sample at standard condition is 123.84 L.
Explanation:
Given:
= 105 L,
,
= 985 torr
At standard conditions,
= 273 K,
= 760 K,
= ?
Formula used to calculate the volume is as follows.

Substitute the values into above formula as follows.

Thus, we can conclude that volume occupied by given neon sample at standard condition is 123.84 L.
1 Cal ---------- 4.184 J
? Cal ---------- 130.0 J
130.0 x 1 / 4.184 => 31.07 Cal
hope this helps!
To dilute a solute in a solution, it is necessary to add a proper solvent for the reaction to occur, and adding more solvent will cause the solution to dilute even more, therefore the best answer will be letter B
When E° cell is an electrochemical cell which comprises of two half cells.
So,
when we have the balanced equation of this half cell :
Al3+(aq) + 3e- → Al(s) and E°1 = -1.66 V
and we have also this balanced equation of this half cell :
Ag+(aq) + e- → Ag(s) and E°2 = 0.8 V
so, we can get E° in Al(s) + 3Ag (aq) → Al3+(aq) + 3Ag(s)
when E° = E°2 - E°1
∴E° =0.8 - (-1.66)
= 2.46 V
∴ the correct answer is 2.46 V
Answer : The value of rate of reaction is 
Explanation :
Rate law : It is defined as the expression which expresses the rate of the reaction in terms of molar concentration of the reactants with each term raised to the power their stoichiometric coefficient of that reactant in the balanced chemical equation.
The given chemical equation is:

Rate law expression for the reaction is:
![\text{Rate}=k[NO]^a[O_2]^b](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%5BNO%5D%5Ea%5BO_2%5D%5Eb)
As per question,
a = order with respect to
= 2
b = order with respect to
= 1
Thus, the rate law becomes:
![\text{Rate}=k[NO]^2[O_2]^1](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%5BNO%5D%5E2%5BO_2%5D%5E1)
Now, calculating the value of rate of reaction by using the rate law expression.
Given :
k = rate constant = 
[NO] = concentration of NO = 
= concentration of
= 
Now put all the given values in the above expression, we get:


Hence, the value of rate of reaction is 