The answer to the question is an orgamisn
Answer:
Vx = 35.31 [km/h]
Vy = 18.77 [km/h]
Explanation:
In order to solve this problem, we must decompose the velocity component by means of the angle of 28° using the cosine function of the angle.
![v_{x} = 40*cos(28)\\V_{x} = 35.31 [km/h]](https://tex.z-dn.net/?f=v_%7Bx%7D%20%3D%2040%2Acos%2828%29%5C%5CV_%7Bx%7D%20%3D%2035.31%20%5Bkm%2Fh%5D)
In order to find the vertical component, we must use the sine function of the angle.
![V_{y}=40*sin(28)\\V_{y} = 18.77 [km/h]](https://tex.z-dn.net/?f=V_%7By%7D%3D40%2Asin%2828%29%5C%5CV_%7By%7D%20%3D%2018.77%20%5Bkm%2Fh%5D)
Answer:
Wavelength = 9.68 meters
Explanation:
Given the following data;
Speed = 300,000,000m/s
Frequency = 31 Megahertz to Hertz = 31 * 10⁶ Hz
To find the wavelength;
Wavelength = speed/frequency
Wavelength = 300,000,000/31,000,000
Wavelength = 9.68 meters
Answer:
Coefficient of friction will be 0.587
Explanation:
We have given mass of the car m = 500 kg
Distance s = 18.25 m
Initial velocity of the car u = 14.5 m/sec
As the car finally stops so final velocity v = 0 m/sec
From second equation of motion



We know that acceleration is given by



So coefficient of friction will be 0.587
Answer:
D
Explanation:
they can see this along with many other fish.