This problem is providing the mass-volume percent of a formic acid solution so its molarity is required and found to be 0.313 M after the following calculations.
<h3>Molarity</h3>
In chemistry, units of concentration provide a measurable understanding of the relationship between the relative amounts of both solute and solvent. In the case of molarity, one must relate moles of solute and liters of solution as follows:

In such a way, when given this mass-volume percent of 1.44% for the formic acid in the solution, one can assume there is 100 mL of solution and 1.44 g of solute (formic acid), which means one must convert the volume to liters and the mass to moles with:

Finally, we plug in these numbers in the equation for the calculation of molarity:

Learn more about molarity: brainly.com/question/10053901
We are given the chemical reaction and the amount of reactant used for the process. We use these data together to obtain what is asked. We do as as follows:
0.882 mol H2O2 ( 1 mol O2 / 2 mol H2O2 ) = 0.441 mol O2 produced
Hope this answers the question.
Answer:Vinegar Is 5% Acetic Acid And Its Molarity Is 0.833M.
Explanation:
yes
PH of acidic buffer = pKa + log [CH₃COONa - HCl] / [CH₃COOH + HCl]
pKa of CH₃COOH = 4.74
Concentration of acetic acid in buffer = 2.0 M
Concentration of sodium acetate = 1.0 M
Concentration of HCl must add = x
pH = 4.74 + log (1-x) / (2+x) = 4.11
x = concentration of HCl must be added = 0.43 M
number of moles of HCl = M * V = 0.43 * 1 = 0.43 mol
mass of HCl must be added = 0.43 * 36.5 = 15.7 g