Answer: Option (A) is the correct answer.
Explanation:
Braising means first of all fry a dish slightly and then cook it slowly in a closed vessel or dish. The vessel is close so that the liquid present inside it does not evaporates.
Also, Braising is done to mix the flavors of different liquids or spices appropriately.
Thus, we can conclude that as a cooking method, braising is valued for its ability to retain flavor.
Answer:
C= 0.532M
Explanation:
The equation of reaction is
H2SO4 + 2KOH = K2SO4+ H2O
nA= 1, nB= 2, CA= ?, VA= 48.9ml, CB= 1.5M, VB= 34.7ml
Applying
CAVA/CBVB = nA/nB
(CA× 48.9)/(1.5×34.7)= 1/2
Simplify
CA= 0.532M
Answer:
01) Cu tting hair is a physical change. reason-1
02) Cooking can be either one, but I would choose chemical reason-3
03) Ice cream melting is a physical change reason-2
Explanation:
<span>A chemist adds 155.0ml of a 4.10 X 10^-5 mmol/L of a zinc oxalate (ZnC2O4)solution to a reaction flask. Calculate the mass in micrograms of zinc oxalate the chemist has added to the flask.
1mmol = 10^-3 mol
Therefore 4.10*10^-5mmol = 4.10*10^-8mol
molar mass ZnC2O4 = 65.39+(2*12.011)+(4*15.99) = 153.372g/mol
You have 4.10*10^-8 mol/litre =153.372 * 4.10*10^-8 = 6.29*10^-6 grams / litre (* see below)
But you have 155ml. Mass of ZnC2O4 = 155/1000*6.29*10^-6 g
Mass is = 9.75*10^-7 grams
1µg = 10^-6 g
You then have 9.75*10^-7/10^-6 = 0.975µg ZnC2O4
(*see below) at this point you could have said:
1µg = 10^-6 g therefore you have a solution of 6.29µg per litre,
155ml = 6.29*155/1000 = 0.975µg ZnC2O4</span>
Answer:
IV
Explanation:
The complete question is shown in the image attached.
Let us call to mind the fact that the SN1 mechanism involves the formation of carbocation in the rate determining step. The order of stability of cabocations is; tertiary > secondary > primary > methyl.
Hence, a tertiary alkyl halide is more likely to undergo nucleophilic substitution reaction by SN1 mechanism since it forms a more stable cabocation in the rate determining step.
Structure IV is a tertiary alkyl halide, hence it is more likely to undergo nucleophilic substitution reaction by SN1 mechanism.