Answer:

Explanation:
Hello!
In this case, we can divide the problem in two steps:
1. Dilution to 278 mL: here, the initial concentration and volume are 1.20 M and 52.0 mL respectively, and a final volume of 278 mL, it means that the moles remain the same so we can write:

So we solve for C2:

2. Now, since 111 mL of water is added, we compute the final volume, V3:

So, the final concentration of the 139 mL portion is:

Best regards!
I am positive it is solar energy
The main <span>hazard </span>is the Radiation and the Gamma rays that are dispersed
Answer:
1) 1.15 mol
2) M=0.45
3) 22.5 mL
4) 6.25 mL
Explanation:
1)
550 mL= 0.55 L
M= mol solute/ L solution
mol solute= M * L solution
mol solute= (2.1 M * 0.55 L ) M=1.15 mol solute
2)
155 mL = 0.155 L
80 g -> 1 mol NH4NO3
5.61 g -> x
x= (5.61 g * 1 mol NH4NO3)/80 g x= 0.07 mol NH4NO3
M=(0.07 mol NH4NO3)/0.155 L M=0.45
3) M1V1=M2V2
V1= M2V2/M1
V1= (0.500 M * 0.225 L)/5.00 M V1=0.0225 L =22.5 mL
4) M1V1=M2V2
V1= M2V2/M1
V1= (0.25 M * 0.45 L)/ 18.0 M
V1=6.25 x 10^-3 L = 6.25 mL
Answer:
NO.3) Mass of Al2O3 formed = 229.5g