1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ruslelena [56]
3 years ago
11

Lified True or False

Physics
1 answer:
Nana76 [90]3 years ago
5 0
Trueeeeeeeeeeeeeeeeeeeeeee
You might be interested in
X-rays with an energy of 300 keV undergo Compton scattering from a target. If the scattered rays are detected at 30 relative to
lys-0071 [83]

Answer:

a) \Delta \lambda = \lambda' -\lambda_o = \frac{h}{m_e c} (1-cos \theta)

For this case we know the following values:

h = 6.63 x10^{-34} Js

m_e = 9.109 x10^{-31} kg

c = 3x10^8 m/s

\theta = 37

So then if we replace we got:

\Delta \lambda = \frac{6.63x10^{-34} Js}{9.109 x10^{-31} kg *3x10^8 m/s} (1-cos 37) = 4.885x10^{-13} m * \frac{1m}{1x10^{-15} m}= 488.54 fm

b) \lambda_0 = \frac{hc}{E_0}

With E_0 = 300 k eV= 300000 eV

And replacing we have:

\lambda_0 = \frac{1240 x10^{-9} eV m}{300000eV}=4.13 x10^{-12}m = 4.12 pm

And then the scattered wavelength is given by:

\lambda ' = \lambda_0 + \Delta \lambda = 4.13 + 0.489 pm = 4.619 pm

And the energy of the scattered photon is given by:

E' = \frac{hc}{\lambda'}= \frac{1240x10^{-9} eVm}{4.619x10^{-12} m}=268456.37 eV - 268.46 keV

c) E_f = E_0 -E' = 300 -268.456 kev = 31.544 keV

Explanation

Part a

For this case we can use the Compton shift equation given by:

\Delta \lambda = \lambda' -\lambda_0 = \frac{h}{m_e c} (1-cos \theta)

For this case we know the following values:

h = 6.63 x10^{-34} Js

m_e = 9.109 x10^{-31} kg

c = 3x10^8 m/s

\theta = 37

So then if we replace we got:

\Delta \lambda = \frac{6.63x10^{-34} Js}{9.109 x10^{-31} kg *3x10^8 m/s} (1-cos 37) = 4.885x10^{-13} m * \frac{1m}{1x10^{-15} m}= 488.54 fm

Part b

For this cas we can calculate the wavelength of the phton with this formula:

\lambda_0 = \frac{hc}{E_0}

With E_0 = 300 k eV= 300000 eV

And replacing we have:

\lambda_0 = \frac{1240 x10^{-9} eV m}{300000eV}=4.13 x10^{-12}m = 4.12 pm

And then the scattered wavelength is given by:

\lambda ' = \lambda_0 + \Delta \lambda = 4.13 + 0.489 pm = 4.619 pm

And the energy of the scattered photon is given by:

E' = \frac{hc}{\lambda'}= \frac{1240x10^{-9} eVm}{4.619x10^{-12} m}=268456.37 eV - 268.46 keV

Part c

For this case we know that all the neergy lost by the photon neds to go into the recoiling electron so then we have this:

E_f = E_0 -E' = 300 -268.456 kev = 31.544 keV

3 0
3 years ago
Read 2 more answers
An orchestra is practicing a piece that is to be played at an allegro tempo. The conductor sets a metronome at 160 beats per min
omeli [17]

Answer:

375 ms

Explanation:

the frequency of metronome , f = 160 beats per minute

f = 160 /60 beats per sec

f = 2.67 beats /s

the period of a single beat , T = 1/f

T = 1/2.67 s

T = 0.375 s = 375 ms

the period of a single beat is 375 ms

3 0
3 years ago
Find expressions for the force needed to bring an object of mass m from rest to speed v in time t. express your answer in terms
VARVARA [1.3K]
Good morning.

We have that:

\mathsf{V = a\cdot t} , since we have rest in the inicial time.

The acceleration can be found with Newton's Law:

\mathsf{F = m\cdot a\iff a = \dfrac{F}{m}}

Now we put the acceleratin in the velocity equation:

\mathsf{V = \dfrac{F}{m} \cdot t}

We want the force, so, let's isolate F:

\mathsf{V\cdot m = F\cdot t}\\ \\ \\ \boxed{\mathsf{F = \dfrac{V\cdot m}{t}}}

3 0
3 years ago
Say you want to make a sling by swinging a mass M of 1.9 kg in a horizontal circle of radius 0.042 m, using a string of length 0
padilas [110]

Answer: T= 715 N

Explanation:

The only external force (neglecting gravity) acting on the swinging mass, is the centripetal force, which. in this case, is represented by the tension in the string, so we can say:

T = mv² / r

At the moment that the mass be released, it wil continue moving in a straight line at the same tangential speed that it had just an instant before, which is the same speed included in the centripetal force expression.

So the kinetic energy will be the following:

K = 1/2 m v² = 15. 0 J

Solving for v², and replacing in the expression for T:

T = 1.9 Kg (3.97)² m²/s² / 0.042 m = 715 N

3 0
3 years ago
Has a man he has married many women but has never been married before who is he​
morpeh [17]

Answer:

Explanation:

The answer is a priest or a moulana

5 0
3 years ago
Read 2 more answers
Other questions:
  • An unstable atomic nucleus has a mass of 17.010-27kg, and starts out at rest. When it decays, it the original nucleus disintegra
    11·1 answer
  • How is color related to wavelength?
    8·1 answer
  • When light passes from a more-dense to a less-dense medium—from glass to air, for example—the angle of refraction predicted by S
    14·1 answer
  • Raul wants to increase his upper body and cardiovascular strength. He plans to go to the gym and use his backyard swimming pool
    5·1 answer
  • According to a certain estimate, the depth N(t), in centimeters, of the water in a certain tank at t hours past 2:00 in the morn
    8·1 answer
  • Differentiate between moments and momentum​
    8·1 answer
  • The more POWER you use to move an object, the more work you do.
    9·2 answers
  • HOW DOES A GRAPH HELP YOU SEE ANOMALOUS DATA?
    14·1 answer
  • Identify the fundamental particles that make up a proton.
    12·1 answer
  • PLS HELP!! YOU CAN SKIP THE INFO IF YOU WANT!!
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!