Training everyday
..........
Answer:
d = 68.18 m
Explanation:
Given that,
Initial velocity, u = 15 m/s
Finally it comes to stop, v = 0
Acceleration, a = -1.65 m/s²
Time, t = 2.5 s
We need to find the distance covered by the hayride before coming to a stop. Let d is the distance covered. Using third equation of motion to find it :

So, the hayride will cover a distance of 68.18 m.
The elevation in reservoir at the rate of flow using is 03m/s is 114m.
The Reynolds range is the ratio of inertial forces to viscous forces. The Reynolds variety is a dimensionless variety used to categorize the fluids structures in which the impact of viscosity is crucial in controlling the velocities or the flow sample of a fluid.
The reason of the Reynolds number is to get a few experience of the relationship in fluid glide between inertial forces (this is those that maintain going by using Newton's first law – an item in motion stays in movement) and viscous forces, this is people who cause the fluid to come back to a forestall because of the viscosity of the fluid.
calculation,
Let L = 100 m pipe
L1 = 150 m pipe
H f = friction losses
Using Reynolds number, relative roughness, friction co- effiicients and friction losses
Substitute the value in equation
Z = 110= 0.48= 3.54
Z = 114m
Therefore water surface elevation at reservoir is 114 meter.
Learn more about rate of flow here:-brainly.com/question/21630019
#SPJ4
Answer: λ2= 2.34 * 10^-6 C/m
Explanation: In order to calculate the value of the linear charge density of the insulating shell we have to multiply ρ* Volume of the hollow cylinder, so
Volume of cylinder:2*π*b*L *(b-a) where (b-a) is the thickness, then
λ2=Q/L = 634 *10^-6 C/m^3* 2*π*0.042 m*(0.042-0.26)== 2.34 μ C/m