First, we have to remember the molarity formula:
Part 1:
In this case, our solute is sodium nitrate (NaNO3), and we have the mass dissolved in water, then we have to convert grams to moles. For that, we need the molecular weight:
Then, we calculate the moles present in the solution:
Now, we have the necessary data to calculate the molarity (with the solution volume of 200 mL):
The molarity of this solution equals 0.2339 M.
Part 2:
In this case, we have the same amount (in moles and mass) of sodium nitrate, but a different volume of solution, then we only have to change it:
So, the molarity of this solution is 0.1701 M.
C! The clownfish hide in the sea anemones for protection
Answer:
Option D. pH= 1.3 strong acid
Explanation:
From the question given:
The hydrogen ion concentration [H+] = 0.05 M
pH = —Log [H+]
pH = —Log 0.05
pH = 1.3
Since the pH lies between 0 and 7, the solution is acidic. Since the pH value is low, the solution is a strong acid
The full chemical symbol for an element<span> shows its mass </span>number<span> at the top, and its atomic </span><span>number at the bottom</span>