Answer:
(3) 5.36
Explanation:
Since this is a titration of a weak acid before reaching equivalence point, we will have effectively a buffer solution. Then we can use the Henderson-Hasselbalch equation to answer this question.
The reaction is:
HAc + NaOH ⇒ NaAc + H₂O
V NaOH = 40 mL x 1 L/1000 mL = 0.040 L
mol NaOH reacted with HAc = 0.040 L x 0.05 mol/L = 0.002 mol
mol HAC originally present = 0.050 L x 0.05 mol/L = 0.0025 mol
mol HAc left after reaction = 0.0025 - 0.002 = 0.0005
Now that we have calculated the quantities of the weak acid and its conjugate base in the buffer, we just plug the values into the equation
pH = pKa + log ((Ac⁻)/(HAc))
(Notice we do not have to calculate the molarities of Ac⁻ and HAc because the volumes cancel in the quotient)
pH = -log (1.75 x 10⁻⁵) + log (0.002/0.0005) = 5.36
THe answer is 5.36
PH = pKa + log
![\frac{[base]}{[Acid]}](https://tex.z-dn.net/?f=%20%5Cfrac%7B%5Bbase%5D%7D%7B%5BAcid%5D%7D%20)
Acid is HC₂H₃O₂ and conjugate base is KC₂H₃O₂,
pKa = - log Ka = - log (1.8 x 10⁻⁵) = 4.74
so pH = 4.74 + log (0.2/0.2) = 4.74
This is called maximum buffer capacity (when acid conc. and base conc. are equal) the pH = pKa in this case
Answer: Difference in properties of these two compounds are because one compound is covalent and the other one is ionic.
Explanation: LiCl is an inorganic compound having high electronegativity difference between the two elements and hence, is termed as an ionic compound.
is a organic compound formed by the sharing of electrons between the elements, hence is termed as a covalent compound.
Hence, the properties are different because one of the compound is covalent and other is ionic.
Answer:
Some elements have variable valencies because of the different electronic configurations. An atom of an element can sometimes lose more electrons than are present in its valence shell i.e. loss from the penultimate shell and hence exhibit more than 1 or variable valency.
Explanation:
Hope it helps.
Answer:
(edit: nvm I figured it out, here is the answer)
Explanation: