The absolute zero in temperature refers to the minimal possible temperature. It is the temperature at which the molecules of a system stop moving, so it is a really useful reference point.
<h3>Why absolute zero can't be reached?</h3>
It would mean that we need to remove all the energy from a system, but to do this we need to interact with the system in some way, and by interacting with it we give it "some" energy.
Actually, from a quantum mechanical point of view, the absolute zero has a residual energy (so it is not actually zero) and it is called the "zero point". This happens because it must meet <u>Heisenberg's uncertainty principle</u>.
So yes, the absolute zero can't be reached, but there are really good approximations (At the moment there is a difference of about 150 nanokelvins between the absolute zero and the smallest temperature reached). Also, there are a lot of investigations near the absolute zero, like people that try to reach it or people that just need to work with really low temperatures, like in type I superconductors.
So, concluding, why does the concept exist?
- Because it is a reference point.
- It is the theoretical temperature at which the molecules stop moving, defining this as the <u>minimum possible temperature.</u>
If you want to learn more about the absolute zero, you can read:
brainly.com/question/3795971
The x-ray beam's penetrating power is regulated by kVp (beam quality). Every time an exposure is conducted, the x-rays need to be powerful (enough) to sufficiently penetrate through the target area.
<h3>How does kVp impact the exposure to digital receptors?</h3>
The radiation's penetration power and exposure to the image receptor both increase as the kVp value is raised.
<h3>Exposure to the image receptor is enhanced with an increase in kVp, right?</h3>
Due to an increase in photon quantity and penetrability, exposure at the image receptor rises by a factor of five of the change in kVp, doubling the intensity at the detector with a 15% change in kVp.
To know more about kVp visit:-
brainly.com/question/17095191
#SPJ4
Answer:
A) About
newtons
B) 76.518 newtons
C) 111.834 newtons
Explanation:
A)
, where G is the universal gravitational constant, M 1 and 2 are the masses of both objects in kilograms, and r is the radius in meters. Plugging in the given numbers, you get:

B) You can find the weight of each object on Earth because you know the approximate acceleration due to gravity is 9.81m/s^2. Multiplying this by the mass of each object, you get a weight for the first particle of 76.518 newtons.
C) You can do a similar thing to the previous particle and find that its weight is 11.4*9.81=111.834 newtons.
Hope this helps!