Answer:
The correct answer is 5.447 × 10⁻⁵ vacancies per atom.
Explanation:
Based on the given question, the at 750 degree C the number of vacancies or Nv is 2.8 × 10²⁴ m⁻³. The density of the metal is 5.60 g/cm³ or 5.60 × 10⁶ g/m³. The atomic weight of the metal given is 65.6 gram per mole. In order to determine the fraction of vacancies, the formula to be used is,
Fv = Nv/N------ (i)
Here Nv is the number of vacancies and N is the number of atomic sites per unit volume. To find N, the formula to be used is,
N = NA×P/A, here NA is the Avogadro's number, which is equivalent to 6.022 × 10²³ atoms per mol, P is the density and A is the atomic weight. Now putting the values we get,
N = 6.022 × 10²³ atoms/mol × 5.60 × 10⁶ g/m³ / 65.6 g/mol
N = 5.14073 × 10²⁸ atoms/m³
Now putting the values of Nv and N in the equation (i) we get,
Fv = 2.8 × 10²⁴ m⁻³ / 5.14073 × 10²⁸ atoms/m^3
Fv = 5.44669 × 10⁻⁵ vacancies per atom or 5.447 × 10⁻⁵ vacancies/atom.
Answer:
It would take 3.64 hours to travel.
Explanation:
200km with 55 per hour.
200 divided by 55 would equal 3.64.
I am dividing because to solve time would be distance/rate.
I hope this helps! :)
Answer: 2:2 but if simplified it’s 1:1
Explanation:
Answer:
Waves involve the transport of energy without the transport of matter. In conclusion, a wave can be described as a disturbance that travels through a medium, transporting energy from one location (its source) to another location without transporting matter.
Explanation:
hope this helps, I tried to give an easy definition :)
Answer:
B. is the answer
Explanation:
Energy in form of heat is transferred from the warmer mashed potatoes to the cooler spoon.