Answer:
3.711 L
Explanation:
The formula you need to use is the following:

3.4L / 298 K = V2 / 273 K
V2 = 3.711 L
So potassium is more reactive than lithium because the outer electron of a potassium atom is further from its nucleus than the outer electron of a lithium atom. Hope this answers the question. Have a nice day. Feel free to ask more questions.
Answer:
2PO₄³⁻ + 3Fe²⁺ → Fe₃(PO₄)₂(s)
Explanation:
In a net ionic equation you list <em>only the ions that are participating in the reaction. </em>
When potassium phosphate, K₃PO₄, reacts with iron (II) nitrate, Fe(NO₃)₂ producing iron (II) phosphate, Fe₃(PO₄)₂ that is an insoluble salt. The reaction is:
2K₃PO₄ + 3 Fe(NO₃)₂ → Fe₃(PO₄)₂(s) + 6NO₃⁻ + 6K⁺
The ionic equation is:
6K⁺ + 2PO₄³⁻ + 3Fe²⁺ + 6NO₃⁻→ Fe₃(PO₄)₂(s) + 6NO₃⁻ + 6K⁺
Subtracting the K⁺ and NO₃⁻ ions that are not participating in the reaction, the net ionic equation is:
<h3>2PO₄³⁻ + 3Fe²⁺ → Fe₃(PO₄)₂(s)</h3>
<u>Answer 2 :</u> The given electronic configuration for a neutral atom of phosphorous in its ground state is incorrect.
Explanation :
A neutral atom of phosphorous has 15 electrons.
The given electronic configuration is incorrect.
The reason is, According to Aufbau principle, the electrons will be first filled in the sub-shell having lower orbital energy. As from the given configuration, 3p sub-shell has lower orbital energy than 4s sub-shell. So, the electrons will be filled in 3p sub-shell first. Hence, the ground state electronic configuration of neutral atom of phosphorous is,

<u>Answer 3 :</u>
Element Rubidium Magnesium Aluminium
Symbol Rb Mg Al
Group number 1 2 13
Number of valence 1 2 3
electrons
The order of general reactivity on the basis of number of valence electrons.
Rb > Mg > Al
Reason : The reactivity is determined by the number of electrons present in the outermost shell that means the element which have 1 valence electron will be more reactive because they can easily lose electrons.