Explanation:
The kinetic energy is basically the energy possesses by virtue of a body's motion
1. The truck moving to the quarry
let the mass be x
and the velocity is given as 20m/s
we know that the kinetic energy is given as
KE=1/2mv^2
KE=1/2(x)*20^2
KE=1/2(x)400
KE=200x
2. The truck leaving to the quarry
let the mass be 2x
and the velocity is given as 20m/s
we know that the kinetic energy is given as
KE=1/2mv^2
KE=1/2(2x)*20^2
KE=1/2(2x)400
KE=400x
From the analysis the kinetic energy is a function of mass, doubling the mass doubles the kinetic energy
Answer:
right
Explanation:
think of a compass theres N.E.S.W north, east, south, west
Answer:
spiral galaxies move away from us 10% faster than elliptical galaxies at the same distances; irregular galaxies outside the Local Group are moving toward us; galaxy speeds are faster in summer than in winter
Explanation:
This may help I'm not sure.
Answer:
12.6 m/s
Explanation:
We know that the linear speed v = rω where r = radius and ω = angular acceleration. Given that ω = 62.8 rad/s and r = 20 cm from center = 0.2 cm
So, v = rω
= 0.2 m × 62.8 rad/s
= 12.56 m/s
≅12.6 m/s
First you need to make a difference between friction while object is stationary and the friction while object is moving. Force required to start moving some object is slightly greater than force required to maintain objects movement. That means that to move a chair you need some force F1 but you can than slightly reduce force and chair will still be moving.
Now to the problem in this question: It can be said that "stationary friction force" is equal to 15 Newtons. Its also good to know that friction force between chair and floor while you are increasing your push is also increasing and is equal to force of your push. Once it reaches 15N which is it "critical value" for that chair, chair starts moving and friction force drops a little bit and now it is called friction force of moving chair.