This separation technique is a 4-step procedure. First, add H₂SO₄ to the solution. Because of common ion effect, BaSO₄ will not react, only Mg(OH)₂.
Mg(OH)₂ + H₂SO₄ → MgSO₄ + 2 H₂O
The aqueous solution will now contain MgSO₄ and BaSO₄. Unlike BaSO₄, MgSO₄ is soluble in water. So, you filter out the solution. You can set aside the BaSO₄ on the filter paper. To retrieve Mg(OH)₂, add NaOH.
MgSO₄ + 2 NaOH = Mg(OH)₂ + Na₂SO₄
Na₂SO₄ is soluble in water, while Mg(OH)₂ is not. Filter this solution again. The Mg(OH)₂ is retrieved in solid form on the filter paper.
Answer: option (1) decreases.
Explanation:
May be you have experienced that: when you go to the beach, where the atmposhpere pressure is greater than the atmosphere pressure in places that are at higher altitudes, the water takes longer to boil. That is because the boiling temperature is greater, and you need more total heat (more time) to permit the liquid to reach that temperature.
The reason why that happens is because substances boil when the vapor pressure (the pressure of the particles of vapor over the liquid) equals the atmosphere pressure. So, when the atmposhere pressure increases, the temperature at which the vapor pressure reaches the atmosphere pressure also increases, and when the atmosphere pressure decreases, the temperature at which the vapor pressure reaches the atmosphere pressure decreases.