Answer:21.45 m/s
Explanation:
Given
Mass of sport car=920 kg
Mass of SUV=2300 kg
distance to which both car skid is 2.4 m
coefficient of friction (
)=0.8
Let u be the initial velocity of both car at the starting of skidding
and they finally come to zero velocity


s=2.4 m

u=6.13 m/s
so before colliding sport car must be travelling at a speed of
(conserving momentum)
v=21.45 m/s
Answer:
2 m
Explanation:
The displacement of any body is the shortest distance in an object's path between its initial and final point.
The ball would travel 3 m from the point of throwing then fall down 5 m to the ground. The total distance traveled is 7 m.
The displacement of the ball will be the distance from the point of throwing to the ground i.e., 2 m as it is the shortest distance between the initial and final point of the ball's journey.
Thomas Edison is the answer im 100% sure of it.
m1= mass 1 = 1.1 kg
Vi1 = initial velocity 1 = 2.7 m/s
m2= 2.4 kg
V2i = -1.9 m/s
We assume east as positive and west as negative.
Apply the formulas:
Vf1 = ?

Replacing:



Answer: 3.6 m/s west
Answer:
Explanation:
Let the velocity be v
Total energy at the bottom
= rotational + linear kinetic energy
= 1/2 Iω² + 1/2 mv² ( I moment of inertia of shell = mr² )
= 1/2 mr²ω² + 1/2 mv² ( v = ω r )
= 1/2 mv² +1/2 mv²
= mv²
mv² = mgh ( conservation of energy )
v² = gh
v = √gh
= √9.8 x 1.8
= 4.2 m /s