Answer:
Q = 4019.4 J
Explanation:
Given data:
Mass of ice = 20.0 g
Initial temperature = -10°C
Final temperature = 89.0°C
Amount of heat required = ?
Solution:
specific heat capacity of ice is 2.03 J/g.°C
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = T2 - T1
ΔT = 89.0°C - (-10°C)
ΔT = 99°C
Q = 20.0 g ×2.03 J/g.°C × 99°C
Q = 4019.4 J
C. 6, 1, 0, -1/2
Explanation:
The four quantum numbers are:
- Principal quantum number (n): this represents the energy level in which an orbital is located.
- Azimuthal quantum number gives the shape of the orbitals in subshells accommodating the electrons.
- Magnetic quantum number gives the number of spatial orientations or degeneracy of the orbitals in the subshells.
- Spin quantum number describes the spinning of an electron in either clockwise or anticlockwise directions.
To know the electron with the highest energy, we use the principal quantum number values.
n values takes whole numbers i.e n = 1,2,3,4,5,6,7.............
The higher the value, the higher the energy level.
From the given quantum numbers, C has the highest energy levels.
Learn more;
Quantum numbers brainly.com/question/9288609
#learnwithBrainly
Answer:
The mantel. I'm pretty sure.
Explanation: