Hello!
A) At pH=1
This pH is lower than the value for the pKa, so Acetic acid wouldn't be ionized, but the equilibrium would be displaced to
CH₃COOHCH₃COOH ⇄ CH₃COO⁻ + H₃O⁺ (equilibrium displaced to the
left)
The chemical structure for CH₃COOH is the first one in the attached images.
B) At pH=7
This pH is higher than the value for the pKa, so Acetic acid would be ionized, and the equilibrium would be displaced to
CH₃COO⁻
CH₃COOH ⇄ CH₃COO⁻ + H₃O⁺ (equilibrium displaced to the
right)
The chemical structure for CH₃COO⁻ is the second one in the attached images.
Have a nice day!
Forces along the horizontal
force that caused initial velocity in x-dir
force that caused final velocity in x-dir
forces along the vertical
force that caused initial velocity in y-dir
force that caused final velocity in y-dir
force of gravity
The amount in grams of Al₂O₃ produced is approximately 6.80 g.
Aluminium reacts completely with oxygen(air) to produce Al₂O₃. The reaction can be represented with a chemical equation as follows:
AL + O₂ → Al₂O₃
Let's balance it
4AL + 3O₂ → 2Al₂O₃
4 moles of Aluminium reacts with 3 moles of Oxygen molecules to produce 2 moles of Aluminium oxide. Therefore,
Since, aluminium reacts completely, it is the limiting reagent in the reaction. Therefore,
Atomic mass of AL = 27 g
Molar mass of Al₂O₃ = 101.96 g/mol
4(27 g) of AL gives 2(101.96 g) of Al₂O₃
3.6 g of AL will give ?
cross multiply
mass of Al₂O₃ produced = 3.6 × 203.92 / 108 = 734.112 / 108 = 6.797
mass of Al₂O₃ produced = 6.80 g.
read more: brainly.com/question/23982245?referrer=searchResults
Answer:
Explanation:
In general, an increase in pressure (decrease in volume) favors the net reaction that decreases the total number of moles of gases, and a decrease in pressure (increase in volume) favors the net reaction that increases the total number of moles of gases.
Δn= b - a
Δn= moles of gaseous products - moles of gaseous reactants
Therefore, <u>after the increase in volume</u>:
- If Δn= −1 ⇒ there are more moles of gaseous reactants than gaseous products. The equilibrium will be shifted towards the products, that is, from left to right, and K>Q.
- If Δn= 0 ⇒ there is the same amount of gaseous moles, both in products and reactants. The system is at equilibrium and K=Q.
- Δn= +1 ⇒ there are more moles of gaseous products than gaseous reactants. The equilibrium will be shifted towards the reactants, that is, from right to left, and K<Q.