Answer:
True. Diffusion and osmosis are forms of passive transport.
Explanation:
In diffusion, particles move from an area of higher concentration to one of lower concentration until equilibrium is reached.
In osmosis, a semipermeable membrane is present, so only the solvent molecules are free to move to equalize concentration.
Answer:
Pulleys accomplish 2 separate operations throughout the computer controlled additional benefit technologies listed elsewhere here.
Explanation:
- If indeed the pulley would be connected to that same attachment point, these are named a corrected pendulum or perhaps a change in direction. Its job should be to reverse the trajectory of that same rope pull.
- Unless the pulley would be connected to that same load, this same pulley seems to be a detachable as well as a mechanical additional benefit.
Answer:
how large a magnetic field would you experience = 8.16 x 10∧-4T
Explanation:
I = 20KA = 20,000A
r = 4.9 m
how large a magnetic field would you experience = u.I/2πr
how large a magnetic field would you experience = (4π x10∧-7) × 20000/2π × 4.9
how large a magnetic field would you experience = 8.16 x 10∧-4T
Answer:
5.88×10⁸ W
Explanation:
Power = change in energy / time
P = mgh / t
P = (m/t) gh
P = (1.2×10⁶ kg/s) (9.8 m/s²) (50.0 m)
P = 5.88×10⁸ W
Explanation:
The time taken by a wave crest to travel a distance equal to the length of wave is known as wave period.
The relation between wave period and frequency is as follows.
T = \frac{1}{f}T=
f
1
where, T = time period
f = frequency
It is given that wave period is 18 seconds. Therefore, calculate the wave period as follows.
T = \frac{1}{f}T=
f
1
or, f = \frac{1}{T}f=
T
1
= \frac{1}{18 sec}
18sec
1
= 0.055 per second (1cycle per second = 1 Hertz)
or, f = 5.5 \times 10^{-2} hertz5.5×10 −2 hertz
<h3>Thus, we can conclude that the frequency of the wave is 5.5 \times 10^{-2} hertz5.5×10 −2 hertz .</h3>