Answer:

Explanation:
We must do the conversions
mass of C₆H₁₂O₆ ⟶ moles of C₆H₁₂O₆ ⟶ moles of CO₂ ⟶ volume of CO₂
We will need a chemical equation with masses and molar masses, so, let's gather all the information in one place.
Mᵣ: 180.16
C₆H₁₂O₆ + 6O₂ ⟶ 6CO₂ + 6H₂O
m/g: 24.5
(a) Moles of C₆H₁₂O₆

(b) Moles of CO₂

(c) Volume of CO₂
We can use the Ideal Gas Law.
pV = nRT
Data:
p = 0.960 atm
n = 0.8159 mol
T = 37 °C
(i) Convert the temperature to kelvins
T = (37 + 273.15) K= 310.15 K
(ii) Calculate the volume

So the empirical formula is Mg3N2
Answer:
Avogadro's number is the number of particles in one mole of anything. In this context, it is the number of atoms in one mole of an element. It's easy to find the mass of a single atom using Avogadro's number. Simply divide the relative atomic mass of the element by Avogadro's number to get the answer in grams.
Both create energy. Both require atoms.
Fission is ripping the atoms apart, fusion is forcing them together. Fission takes less energy because it's easier to rip unstable atoms apart but pushing two atoms that have similar charges together is extremely hard. Fission is currently mainstream on earth, but fusion is known for taking place within stars.