Answer:
B: Fission reactors generate huge amounts of heat.
C: Fission breaks down unstable elements such as uranium in a breeder reactor which is broken down in the process of fusion which is literally breaking down of elements.
E: fission is used in nuclear weapons as it is easier to accomplish then fusion bombs
Explanation:
A: as a zero-waste energy source
B: for generating large amounts of heat
C: for creating stable elements from unstable ones
D: for creating new, heavier elements
E: as the energy source in nuclear weapons
Answer:
<u />
<u />
<u />
Explanation:
<u>1. Chemical balanced equation (given)</u>

<u>2. Mole ratio</u>

This is, 1 mol of NaOH will reacts with 1 mol of KHP.
<u />
<u>3. Find the number of moles in 72.14 mL of the base</u>



<u>4. Find the number of grams of KHP that reacted</u>
The number of moles of KHP that reacted is equal to the number of moles of NaOH, 0.007055 mol
Convert moles to grams:
- mass = number moles × molar mass = 0.007055mol × 204.23g/mol
You have to round to 3 significant figures: 1.44 g (because the molarity is given with 3 significant figures).
<u>5. Find the percentage of KHP in the sample</u>
The percentage is how much of the substance is in 100 parts of the sample.
The formula is:
- % = (mass of substance / mass of sample) × 100
- % = (1.4408g/ 1.864g) × 100 = 77.3%
It could be a couple different thing, explain more.<span />
Answer:
Mole fraction for C₂₂H₁₉Cl₂NO₃ = 0.0086
Explanation:
Mole fraction remains a sort of concentration. It indicates:
moles of solute / (moles of solute + moles of solvent)
Moles of solute / Total moles.
Solute: Cypermethrin → C₂₂H₁₉Cl₂NO₃
Solvent: Water (PM = 18g/mol)
We calculate moles from solvent: 1000g /18 g/mol = 55.5 moles
We calculate PM for C₂₂H₁₉Cl₂NO₃
12g/mol . 22 + 1g/mol . 19 + 35.45 g/mol . 2+ 14g/mol + 16g/mol . 3 = 416 g/m
Moles of solute: 200 g / 416g/mol = 0.481 moles
Total moles: 0.481 + 55.5 = 55.98 moles
Mole fraction for C₂₂H₁₉Cl₂NO₃ = 0.481 moles / 55.98 moles = 0.0086