Nuclear energy originates from splitting of uranium atoms a process called fission. This generates heat to produce steam.
Hope this helps❤️
Answer:
A beaker
Step-by-step explanation:
Specifically, I would use a 250 mL graduated beaker.
A beaker is appropriate to measure 100 mL of stock solution, because it's easy to pour into itscwide mouth from a large stock bottle.
You don't need precisely 100 mL solution.
If the beaker is graduated, you can easily measure 100 mL of the stock solution.
Even if it isn't graduated, 100 mL is just under half the volume of the beaker, and that should be good enough for your purposes (you will be using more precise measuring tools during the experiment).
Answer:
The volume in cubic centimeters is 250
Explanation:
The rule of three or is a way of solving problems of proportionality between three known values and an unknown value, establishing a relationship of proportionality between all of them.
If the relationship between the magnitudes is direct, that is, when one magnitude increases, so does the other (or when one magnitude decreases, so does the other), the direct rule of three must be applied. To solve a direct rule of three, the following formula must be followed:
a ⇒ b
c ⇒ x
So:

The direct rule of three is the rule applied in this case where there is a change of units. To perform this conversion of units, you must first know that 1 mL = 1 cubic centimeters. So, if 1 cubic centimeters is 1 mL, how many cubic centimeters equals 250 mL?

cubic centimeters= 250
<u><em>The volume in cubic centimeters is 250</em></u>
Answer:
806.3g
Explanation:
Given parameters:
Number of moles of silver nitrate = 4.85mol
Unknown:
Mass of silver chromate = ?
Solution:
2AgNO₃ + Na₂CrO₄ → Ag₂CrO₄ + 2NaNO₃
To solve this problem, we work from the known to the unknown;
- The known specie here is AgNO₃ ;
From the balanced chemical equation;
2 moles of AgNO₃ will produce 1 mole of Ag₂CrO₄
4.85 moles of AgNO₃ will produce
= 2.43moles of Ag₂CrO₄
- Mass of silver chromate produced;
mass = number of moles x molar mass
Molar mass of Ag₂CrO₄
Atomic mass of Ag = 107.9g/mol
Cr = 52g/mol
O = 16g/mol
Input the parameters and solve;
Molar mass = 2(107.9) + 52 + 4(16) = 331.8g/mol
So,
Mass of Ag₂CrO₄ = 2.43 x 331.8 = 806.3g