The answer is 4.
Gases have low densities, because of the increased space between hight-energy particles.
Answer:

Explanation:

The incomplete combustion of alkanes, and other fuels actually, happens when there is a limited supply of oxygen. Instead of the fuel burning completely to produce carbon dioxide, it produces carbon monoxide instead.
This gas is harmful to jumans because it combines with haemoglobin in lood and takes up space that belongs to oxygen which can lead to suffocation or even death
Answer:
Percentage yield = 85.2%
Explanation:
Given data:
Mass of Mg = 21.3 g
Actual yield of MgO = 30.2 g
Percentage yield = ?
Solution:
Chemical equation:
2Mg + O₂ → 2MgO
Number of moles of Mg = mass/molar mass
Number of moles of Mg = 21.3 g / 24.3 g/mol
Number of moles of Mg = 0.88 mol
Now we will compare the moles of MgO with Mg.
Mg : MgO
2 : 2
0.88 : 0.88
Mass of MgO:
Mass of MgO= moles × molar mass
Mass of MgO= 0.88 mol × 40.3g/mol
Mass of MgO = 35.46 g
Actual yield of MgO = 30.2 g
Percentage yield:
Percentage yield = Actual yield/theoretical yield × 100
Percentage yield = 30.2 g/ 35.46 g × 100
Percentage yield = 85.2%
Answer:
A sample of an ideal gas has a volume of 2.21 L at 279 K and 1.01 atm. Calculate the pressure when the volume is 1.23 L and the temperature is 299 K.
You need to apply the ideal gas law PV=nRT
You have the pressure, P=1.01 atm
you have the volume, V = 2.21 L
The ideal gas constant R= 0.08205 L. atm/ mole.K at 273 K
find n = PV/RT = (1.01 atm x 2.21 L / 0.08205 L.atm/ mole.K x 273 K)
n= 0.1 mole, Now find the pressure for n=0.1 mole, T= 299K and
L=1.23 L
P=nRT/V= 0.1mole x 0.08205 (L.atm/ mole.K x 299 k)/ 1.23 L
= 1.994 atm
Explanation: