Q = 1.161 J/kg of heat is required to melt 99.9 g of solid acetic acid (HCH,CO2). Q = mL(Latent heat is the energy emitted or absorbed by a body while changing it state ). (Latent heat is the energy released or absorbed by a body while changing it state ).
<h3>How to fix?</h3>
Apply the equation Q = mL where:
Energy is Q. (J)
m = Mass (g)
L = Acetic acid's latent heat of fusion 192(J/g) = J/g
Q is equal to 0.099 kg times 11.73 kj/mol.
Q = 1.161J/kg.
<h3>What is latent heat, and what varieties are there?</h3>
Latent heat is the amount of energy that a substance experiencing a change in state, such as ice turning into water or water turning into steam, can absorb or release while maintaining a constant temperature and pressure. Types: The material exists in three states: solid, liquid, and gaseous.
<h3>What does "sensible heat" mean?</h3>
Heat that can actually be felt is considered to be sensible heat. Instead of the phase shifting, energy is what causes the temperature to vary as it moves from one system to another. For instance, it warms the water instead of melting the ice.
Learn more about specific heat on:
brainly.com/question/11297584
#SPJ4
Answer:
a)there would be no reaction
Explanation:
The activity series of metals has many functions. The one applicable to this problem is that it can be used to determine whether a reaction will occur or not. Also, based on the positions of metals in the series, we can know how reactive a metal is compared to another.
In a single displacement reaction, a metal replaces another metal based on their position on the activity series. Metals that are higher in the series are generally more reactive than others below them and so will displace them.
Would aluminum replace magnesium to form a new compound or would there be no reaction?
Magnesium is higher than aluminum in the activity series. Therefore it is more reactive than aluminum. No reaction will occur.
Answer:
3.4 M
Explanation:
M = grams/molar mass = ans./volume(L)
M = 919/180 = ans./1.5
2.5 g is the mass of the penny for Canadian coins which have become defunct
Answer: dispersion forces, dipole-dipole and hydrogen bonds
Explanation: