Answer:
(3) 345 nm
Explanation:
<u>Given:</u>
Average C-C bond energy = 347 kJ/mol
<u>To determine:</u>
Wavelength of photon that can break a C-C bond
<u>Calculation:</u>
The energy (E) of a photon is related to its wavelength (λ) by the Planck's equation:

where h = Planck's constant = 6.626*10⁻³⁴ Js
c = speed of light = 3*10⁸ m/s


λ = 3.45*10⁻⁷ m
Since 1 nanometer (nm) = 10⁻⁹ m
The calculated wavelength corresponds to 345 nm
I believe the correct answer from the choices listed above is the second option. For liquids, it is the temperature that affects vapor pressure. <span>The </span>vapor pressure<span> of any substance increases non-linearly with </span>temperature<span> according to the Clausius–Clapeyron </span>relation<span>. Hope this helps. Have a nice day.</span>
Answer: Pauli exclusion principle: only two electrons can occupy the same orbital and they must have opposite spin directions
Explanation:
Answer:
T₂ = 259.84 K
T₂ = -13.31 °C
Explanation:
Given data:
Initial pressure = 700 mmHg
Initial temperature = 30.0°C (30+273.15 K = 303.15 K)
Final temperature = ?
Final pressure = 600 mmHg
Solution:
According to Gay-Lussac Law,
The pressure of given amount of a gas is directly proportional to its temperature at constant volume and number of moles.
Mathematical relationship:
P₁/T₁ = P₂/T₂
Now we will put the values in formula:
700 mmHg /303.15 K = 600 mmHg / T₂
T₂ = 600 mmHg × 303.15 K / 700 mmHg
T₂ =181890 mmHg.K /700 mmHg
T₂ = 259.84 K
Temperature in celsius
259.84 K - 273.15 = -13.31 °C
First of all, this is the chemistry section, while your question is a physics question. Anyway I'll tell you how to solve it.
First we need to find the rate that the truck moves in a second.
1km = 1000m
40km = 40000m
40000m/hr
1 hour = 60 minutes
40000m/hr ÷ 60 = 666.66(repeating)/minute
1 minute = 60 seconds
666.66m/min ÷ 60 = 11.11(rep)m/s
Next we simply multiply the speed of the truck by the number of seconds it travels.
11.11 × 5 = 55.55
Make sure to round it unless you indicate the repeating decimal.
The truck moved 55.56m in 5 seconds.