Answer:
C
Explanation:
this is because i need more space
By just smiling. It normally makes you look more happy.And if your happy that's positive body languge
Answer:
9) a = 25 [m/s^2], t = 4 [s]
10) a = 0.0875 [m/s^2], t = 34.3 [s]
11) t = 32 [s]
Explanation:
To solve this problem we must use kinematics equations. In this way we have:
9)
a)

where:
Vf = final velocity = 0
Vi = initial velocity = 100 [m/s]
a = acceleration [m/s^2]
x = distance = 200 [m]
Note: the final speed is zero, as the car stops completely when it stops. The negative sign of the equation means that the car loses speed or slows down as it stops.
0 = (100)^2 - (2*a*200)
a = 25 [m/s^2]
b)
Now using the following equation:

0 = 100 - (25*t)
t = 4 [s]
10)
a)
To solve this problem we must use kinematics equations. In this way we have:

Note: The positive sign of the equation means that the car increases his speed.
5^2 = 2^2 + 2*a*(125 - 5)
25 - 4 = 2*a* (120)
a = 0.0875 [m/s^2]
b)
Now using the following equation:

5 = 2 + 0.0875*t
3 = 0.0875*t
t = 34.3 [s]
11)
To solve this problem we must use kinematics equations. In this way we have:

10^2 = 2^2 + 2*a*(200 - 10)
100 - 4 = 2*a* (190)
a = 0.25 [m/s^2]
Now using the following equation:

10 = 2 + 0.25*t
8 = 0.25*t
t = 32 [s]
Answer:
Explanation:
Given
Wheels are rotating with constant angular velocity let say 
Presence of constant angular velocity show that there is no angular acceleration thus there is no tangential acceleration.
But any particle on the rim will experience a constant acceleration towards center called centripetal acceleration.
(a) yes, there will be tangential velocity which is given by

where r=radial distance from center
(b)tangential acceleration
there would be no tangential acceleration as velocity is constant
(c)centripetal acceleration
Yes, there will be centripetal acceleration given by
