Technically, this delivers a lot of energy into the Earth, but it’s
spread out over a large enough area that it doesn’t do much more than
leave footprints in a lot of gardens. A slight pulse of pressure spreads
through the North American continental crust and dissipates with little
effect. The sound of all those feet hitting the ground creates a loud,
drawn-out roar which lasts many seconds.
Here's the equation you use: Density = mass/volume
1) 5.2g/cm^3 = m/3.7cm^3
2) m = 5.2g/cm^3 x 3.7cm^3
3) m = 19.24g
You can check the answer by plugging it in
19.24g/3.7cm^3
= 5.2g/cm^3
If we want the object to continue to move at constant speed, it means that the resultant of the forces acting on the object must be zero. So far, we have:
- force F1 with direction north, of 10 N
- force F2 with direction west, of 10 N
The third force must balance them, in order to have a net force of zero on the object.
The resultant of the two forces F1 and F2 is
with direction at
north-west. This means that F3 must be equal and opposite to this force: so, F3 must have magnitude 14.1 N and its direction should be
south-east.
Answer:If an object's speed changes, or if it changes the direction it's moving in,
then there must be forces acting on it. There is no other way for any of
these things to happen.
Once in a while, there may be a group of forces (two or more) acting on
an object, and the group of forces may turn out to be "balanced". When
that happens, the object's speed will remain constant, and ... if the speed
is not zero ... it will continue moving in a straight line. In that case, it's not
possible to tell by looking at it whether there are any forces acting on it
We shall consider two properties:
1. Temperature difference
2. Thermal conductivity of the material
Use a cylindrical rod of a given material (say steel) which is insulated around its circumference.
One end of the rod is dipped in a large reservoir of water at 100 deg.C and the other end is dipped in water (with known volume) at 40 deg. C. The cold water if stored in a cylinder which is insulated on all sides. A thermometer reads the temperature of the cold water as a function of time.
This experiment will show that
(a) heat flows from a region of high temperature to a region of lower temperature.
(b) The thermal energy of a body increases when heat is added to it, and its temperature will rise.
(c) The thermal conductivity of water determines how quickly its temperature will rise. If mercury replaces water in the cold cylinder, its temperature will rise at a different rate because its thermal conductivity is different.