Answer:
the body has energy due to its constant motion. it means it moves in a uniform acceleration which has zero velocity
Explanation:
Uniform or constant acceleration is a type of motion in which the velocity of an object changes by an equal amount in every equal time period.
Answer:
i) 24.5 m/s
ii) 30,656 m
iii) 89,344 m
Explanation:
Desde una altura de 120 m se deja caer un cuerpo. Calcule a 2.5 s i) la velocidad que toma; ii) cuánto ha disminuido; iii) cuánto queda por hacer
i) Los parámetros dados son;
Altura inicial, s = 120 m
El tiempo en caída libre = 2.5 s
De la ecuación de caída libre, tenemos;
v = u + gt
Dónde:
u = Velocidad inicial = 0 m / s
g = Aceleración debida a la gravedad = 9.81 m / s²
t = Tiempo de caída libre = 2.5 s
Por lo tanto;
v = 0 + 9.8 × 2.5 = 24.5 m / s
ii) El nivel que el cuerpo ha alcanzado en 2.5 segundos está dado por la relación
s = u · t + 1/2 · g · t²
= 0 × 2.5 + 1/2 × 9.81 × 2.5² = 30.656 m
iii) La altura restante = 120 - 30.656 = 89.344 m.
The magnitude of the force that the beam exerts on the hi.nge will be,261.12N.
To find the answer, we need to know about the tension.
<h3>How to find the magnitude of the force that the beam exerts on the hi.nge?</h3>
- Let's draw the free body diagram of the system using the given data.
- From the diagram, we have to find the magnitude of the force that the beam exerts on the hi.nge.
- For that, it is given that the horizontal component of force is equal to the 86.62N, which is same as that of the horizontal component of normal reaction that exerts by the beam on the hi.nge.
- We have to find the vertical component of normal reaction that exerts by the beam on the hi.nge. For this, we have to equate the total force in the vertical direction.
- To find Ny, we need to find the tension T.
- For this, we can equate the net horizontal force.
- Thus, the vertical component of normal reaction that exerts by the beam on the hi.nge become,
- Thus, the magnitude of the force that the beam exerts on the hi.nge will be,
Thus, we can conclude that, the magnitude of the force that the beam exerts on the hi.nge is 261.12N.
Learn more about the tension here:
brainly.com/question/28106871
#SPJ1
I think the answer is c chemical change
Answer:Fg = mg however newtons second law states that the net force acting on an object is equal to it's mass times it's acceleration so what allows us to say that Fg = mg because certainly not for every single situation the net force is going to equal to the force of gravity please explain... what allows us to say Fg = mg
Source https://www.physicsforums.com/threads/fg-mg-questioned.336776/
Explanation: