Answer:
25 possibly
Explanation:
I'm not too sure about this, but sodium oxide is Na2O, 2 sodium and 1 oxygen, so 12.5g * 2 is 25
If someone else comes up with a more convincing argument listen to them
<span>We can use the heat
equation,
Q = mcΔT </span>
<span>Where Q is
the amount of energy transferred (J), m is the mass of the
substance (kg), c is the specific heat (J g</span>⁻¹ °C⁻<span>¹) and ΔT is the temperature
difference (°C).</span>
Density = mass / volume
The density of water = 0.997 g/mL
<span>Hence mass of 1.25 L (1250 mL) of water = 0.997 g/mL x 1250 mL</span>
<span> = 1246.25 g</span>
Specific heat capacity of water = 4.186 J<span>/ g °C.</span>
Let's assume that there is no heat loss to the surrounding and the final temperature is T.
By applying the equation,
5430 J = 1246.25 g x 4.186 J/ g °C x (T - 23) °C
(T - 23) °C = 5430 J / 1246.25 g x 4.186 J/ g °C
(T - 23) °C = 1.04 °C
T = 1.04 °C + 23 °C
T = 24.04 °C
Hence, the final temperature of the water is 24.04 °C.
The correct answer is B. An observation
Explanation:
An observation is defined as a statement or conclusion you made after observing or measuring a phenomenon, this includes statements based on precise instruments. For example, if you conclude a plant grows 2 inches every month by measuring the plant during this time, this is classified as an observation. The conclusion of the student is also an observation because he concludes this after analyzing the volume of the water in the cylinder through the lines in the graduated cylinder, considering the water is just in the middle of 100 mL and 200 mL which indicates there are 150 mL of water.
The answer is 80 m.
Centripetal force (F) is a force that makes body move around a circular curve. The unit of force is N (N = kg * m/s²).
It can be represented as:

where:
m - mass
v - velocity
r - radius of the curve
We have:
m = 1,200 kg
V = 20 m/s
F = 6,000 N = 6,000 kg * m/s²
We need radius of the curve:
r = ?
So, if <span>

, then:
</span>

⇒

⇒

⇒

⇒
False. carbon-carbon bonds that share 2 pairs of electrons are double bonds. An unsaturated hydrocarbon isnt necessary to only have double bonds. they can also have single bonds or triple bonds.