Answer:
if an object weighs more than an equal volume of water, it is more dense and will sink, and if it weighs less than an equal volume of water, it is less dense and will float.
Explanation:
Hope that helps
The correct answer of the given question above would be a PICTOGRAM. OSHA’s required pictograms must be in the shape of a square set at a point and
include a black hazard symbol on a white background with a red frame sufficiently wide enough to
be clearly visible.
According to an article dated back in February 8, 1992 which is entitled, “Science: Stardust is made of diamonds” on a website called newscientist (https://www.newscientist.com/article/mg13318073-000-science-stardust-is-made-of-diamonds/), American astronomers believed that diamonds are made in supernova explosions. It was said that the diamonds were the foundation of uncommon combinations of isotopes found in some meteorites. Donald Clayton of Clemson University in South Carolina suggested that the weightiest isotopes were more common in meteorites for the reason that the rare gases shaped in the neutron-rich outcome of a supernova explosion. Clayton also said, “the observed mixture of isotopes could have been produced only during the collapse of a massive star to form a neutron star”. This happens in a Type II explosion, for example the Supernova 1987A in the Large Magellanic Cloud. And rare gases like xenon become stuck in both weighty and light isotopes after the ejected gas from such a supernova cools down enough to create dust. The existence of the diamonds with these unusual gases in meteorites infers an alike source. Some of the carbon in the supernova fragments produces ordinary graphite dust, whereas some produces diamond dust. Considerable amount of stardust may be made of diamonds, if Clayton was not mistaken.
A solid is hard and the molecules are packed together, a liquid can move around freely because the molecules aren't as packed together :)
Answer:
C. He shot tiny alpha particles through a piece of gold foil.
Explanation:
In the year 1911, Ernest Rutherford performed the gold foil experiment which gave a deeper perspective to the structure of an atom.
He simply collided a thin gold foil with an alpha particle which he generated from a radioactive source. He discovered that most of the alpha particles passed through the thin gold foil but a few were deflected back. His discovery led to the proposition of the nuclear model of the atom.