Answer:
1
The arrow with greater impart is Arrow B
2
The both arrows will feel the same impulse
Explanation:
1. Arrow B since
it used more force to stop itself in a shorter distance.
2. They should feel the same impulse since the both had the same momentum 
Answer:
9) a = 25 [m/s^2], t = 4 [s]
10) a = 0.0875 [m/s^2], t = 34.3 [s]
11) t = 32 [s]
Explanation:
To solve this problem we must use kinematics equations. In this way we have:
9)
a)

where:
Vf = final velocity = 0
Vi = initial velocity = 100 [m/s]
a = acceleration [m/s^2]
x = distance = 200 [m]
Note: the final speed is zero, as the car stops completely when it stops. The negative sign of the equation means that the car loses speed or slows down as it stops.
0 = (100)^2 - (2*a*200)
a = 25 [m/s^2]
b)
Now using the following equation:

0 = 100 - (25*t)
t = 4 [s]
10)
a)
To solve this problem we must use kinematics equations. In this way we have:

Note: The positive sign of the equation means that the car increases his speed.
5^2 = 2^2 + 2*a*(125 - 5)
25 - 4 = 2*a* (120)
a = 0.0875 [m/s^2]
b)
Now using the following equation:

5 = 2 + 0.0875*t
3 = 0.0875*t
t = 34.3 [s]
11)
To solve this problem we must use kinematics equations. In this way we have:

10^2 = 2^2 + 2*a*(200 - 10)
100 - 4 = 2*a* (190)
a = 0.25 [m/s^2]
Now using the following equation:

10 = 2 + 0.25*t
8 = 0.25*t
t = 32 [s]
there’s no photo. brainly hasent been working for me today so not sure
Since we ride along with the Earth while it's doing whatever it does,
the Earth's rotation causes our eyes to constantly point in a different
direction.
If we try to keep watching one star, we have to keep changing the
direction of our eyes to keep looking at the same star.
We can't feel the Earth rotating, so our brains say that the star ... and
the sun and the moon too ... is actually moving across the sky.