1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sasho [114]
3 years ago
11

The diameter of a cylindrical water tank is Do and its height is H. The tank is filled with water, which is open to the atmosphe

re. An orifice of diameter D with a smooth entrance (i.e., negligible losses) is open at the bottom. Develop a relation for the time required for the tank (a) to empty halfway (5-point) and (b) to empty completely (5-point).
Engineering
1 answer:
Sonbull [250]3 years ago
3 0

Answer:

a. The time required for the tank to empty halfway is presented as follows;

t_1   =   \dfrac{D_0^2 }{D^2 } \cdot \sqrt{ \dfrac{H}{g} } \cdot \left (\sqrt{2} -1 \right)

b. The time it takes for the tank to empty the remaining half is presented as follows;

t_2  = { \dfrac{ D_0^2  }{D} \cdot\sqrt{\dfrac{H}{g} }

The total time 't', is presented as follows;

t =  \sqrt{2}  \cdot \dfrac{D_0^2 }{D^2 } \cdot \sqrt{ \dfrac{H}{g} }

Explanation:

a. The diameter of the tank = D₀

The height of the tank = H

The diameter of the orifice at the bottom = D

The equation for the flow through an orifice is given as follows;

v = √(2·g·h)

Therefore, we have;

\dfrac{P_1}{\gamma} + z_1 + \dfrac{v_1}{2 \cdot g} = \dfrac{P_2}{\gamma} + z_2 + \dfrac{v_2}{2 \cdot g}

\left( \dfrac{P_1}{\gamma} -\dfrac{P_2}{\gamma} \right) + (z_1 - z_2) + \dfrac{v_1}{2 \cdot g} =  \dfrac{v_2}{2 \cdot g}

Where;

P₁ = P₂ = The atmospheric pressure

z₁ - z₂ = dh (The height of eater in the tank)

A₁·v₁ = A₂·v₂

v₂ = (A₁/A₂)·v₁

A₁ = π·D₀²/4

A₂ = π·D²/4

A₁/A₂ = D₀²/(D²) = v₂/v₁

v₂ = (D₀²/(D²))·v₁ = √(2·g·h)

The time, 'dt', it takes for the water to drop by a level, dh, is given as follows;

dt = dh/v₁ = (v₂/v₁)/v₂·dh = (D₀²/(D²))/v₂·dh = (D₀²/(D²))/√(2·g·h)·dh

We have;

dt = \dfrac{D_0^2}{D} \cdot\dfrac{1}{\sqrt{2\cdot g \cdot h} } dh

The time for the tank to drop halfway is given as follows;

\int\limits^{t_1}_0 {} \,  dt = \int\limits^h_{\frac{h}{2} } { \dfrac{D_0^2}{D} \cdot\dfrac{1}{\sqrt{2\cdot g \cdot h} } } \, dh

t_1  =\left[{ \dfrac{D_0^2}{D\cdot \sqrt{2\cdot g} } \cdot\dfrac{h^{-\frac{1}{2} +1}}{-\frac{1}{2} +1 } \right]_{\frac{H}{2} }^{H} =\left[ { \dfrac{D_0^2 \cdot 2\cdot \sqrt{h} }{D\cdot \sqrt{2\cdot g} } \right]_{\frac{H}{2} }^{H} = { \dfrac{2 \cdot D_0^2 }{D\cdot \sqrt{2\cdot g} } \cdot \left(\sqrt{H} - \sqrt{\dfrac{H}{2} } \right)

t_1   = { \dfrac{2 \cdot D_0^2 }{D^2\cdot \sqrt{2\cdot g} } \cdot \left(\sqrt{H} - \sqrt{\dfrac{H}{2} } \right) =  { \dfrac{\sqrt{2}  \cdot D_0^2 }{D^2\cdot \sqrt{ g} } \cdot \left(\sqrt{H} - \sqrt{\dfrac{H}{2} } \right)

t_1   =   { \dfrac{\sqrt{2}  \cdot D_0^2 }{D^2\cdot \sqrt{ g} } \cdot \left(\sqrt{H} - \sqrt{\dfrac{H}{2} } \right) = { \dfrac{D_0^2 }{D^2\cdot \sqrt{ g} } \cdot \left(\sqrt{2 \cdot H} - \sqrt{{H} } \right) =\dfrac{D_0^2 }{D^2 } \cdot \sqrt{ \dfrac{H}{g} } \cdot \left (\sqrt{2} -1 \right)The time required for the tank to empty halfway, t₁, is given as follows;

t_1   =   \dfrac{D_0^2 }{D^2 } \cdot \sqrt{ \dfrac{H}{g} } \cdot \left (\sqrt{2} -1 \right)

(b) The time it takes for the tank to empty completely, t₂, is given as follows;

\int\limits^{t_2}_0 {} \,  dt = \int\limits^{\frac{h}{2} }_{0 } { \dfrac{D_0^2}{D} \cdot\dfrac{1}{\sqrt{2\cdot g \cdot h} } } \, dh

t_2  =\left[{ \dfrac{D_0^2}{D\cdot \sqrt{2\cdot g} } \cdot\dfrac{h^{-\frac{1}{2} +1}}{-\frac{1}{2} +1 } \right]_{0}^{\frac{H}{2} } =\left[ { \dfrac{D_0^2 \cdot 2\cdot \sqrt{h} }{D\cdot \sqrt{2\cdot g} } \right]_{0 }^{\frac{H}{2} } = { \dfrac{2 \cdot D_0^2 }{D\cdot \sqrt{2\cdot g} } \cdot \left( \sqrt{\dfrac{H}{2} } -0\right)

t_2  = { \dfrac{ D_0^2  }{D} \cdot\sqrt{\dfrac{H}{g} }

The time it takes for the tank to empty the remaining half, t₂, is presented as follows;

t_2  = { \dfrac{ D_0^2  }{D} \cdot\sqrt{\dfrac{H}{g} }

The total time, t, to empty the tank is given as follows;

t = t_1 + t_2 =   \dfrac{D_0^2 }{D^2 } \cdot \sqrt{ \dfrac{H}{g} } \cdot \left (\sqrt{2} -1 \right) + t_2  = { \dfrac{ D_0^2  }{D} \cdot\sqrt{\dfrac{H}{g} } =  \dfrac{D_0^2 }{D^2 } \cdot \sqrt{ \dfrac{H}{g} } \cdot \sqrt{2}

t =  \sqrt{2}  \cdot \dfrac{D_0^2 }{D^2 } \cdot \sqrt{ \dfrac{H}{g} }

You might be interested in
If a front gear had 24 teeth, and a rear gear has 12 teeth:
zubka84 [21]

Answer:

  4 times around

Explanation:

The total number of teeth involved will be the same for each gear. If the front gear is connected to the pedal and it goes around twice, then 2·24 = 48 teeth will have passed the reference point.

If the rear gear is attached to the wheel, and 48 teeth pass the reference point, then it will have made ...

  (48 teeth)/(12 teeth/turn) = 4 turns

4 0
3 years ago
Why or why not the following materials will make good candidates for the construction of
zvonat [6]

Answer:

Answer explained below

Explanation:

3.] a] A turbine blade is the individual component which makes up the turbine section of a gas turbine. The blades are responsible for extracting energy from the high temperature, high pressure gas produced by the combustor.

The turbine blades are often the limiting component of gas turbines. To survive in this difficult environment, turbine blades often use exotic materials like superalloys and many different methods of cooling, such as internal air channels, boundary layer cooling, and thermal barrier coatings. The blade fatigue failure is one of the major source of outages in any steam turbines and gas turbines which is due to high dynamic stresses caused by blade vibration and resonance within the operating range of machinery.

To protect blades from these high dynamic stresses, friction dampers are used.

b] Thermal barrier coatings (TBC) are highly advanced materials systems usually applied to metallic surfaces, such as on gas turbine or aero-engine parts, operating at elevated temperatures, as a form ofexhaust heat management.

These 100μm to 2mm coatings serve to insulate components from large and prolonged heat loads by utilizing thermally insulating materials which can sustain an appreciable temperature difference between the load-bearing alloys and the coating surface.

In doing so, these coatings can allow for higher operating temperatures while limiting the thermal exposure of structural components, extending part life by reducing oxidation and thermal fatigue.

In conjunction with active film cooling, TBCs permit working fluid temperatures higher than the melting point of the metal airfoil in some turbine applications.

Due to increasing demand for higher engine operation (efficiency increases at higher temperatures), better durability/lifetime, and thinner coatings to reduce parasitic weight for rotating/moving components, there is great motivation to develop new and advanced TBCs.

3 0
4 years ago
PLS HELP ME
Oksana_A [137]

Answer:

The Euler buckling load of a 160-cm-long column will be 1.33 times the Euler buckling load of an equivalent 120-cm-long column.

Explanation:

160 - 120 = 40

120 = 100

40 = X

40 x 100 / 120 = X

4000 / 120 = X

33.333 = X

120 = 100

160 = X

160 x 100 /120 = X

16000 / 120 = X

133.333 = X

4 0
3 years ago
N DevOps, high levels of automation are expected, which increases productivity. Which fact illustrates this productivity increas
Bess [88]

Answer:

Less intervention of humans.

Explanation:

This fact illustrate that less intervention of human in the production is the main cause for increase in productivity because use of machinery completed the work in less time as compared to the use of human labour. In many industries, machines takes the place of humans which increases the production of products but at the same time, increase the unemployment rate in the society. Making the whole industry on automation can increase the productivity of products in less time.

3 0
3 years ago
How do u charge ur phone? :)
Pepsi [2]
With a phone charger.
7 0
3 years ago
Read 2 more answers
Other questions:
  • Disc brake rotors that are too thin cannot handle as much heat and will experience ___________.
    6·1 answer
  • Plot da(t) if the output voltage of the converter pole-a is vaN(t)=Vd/2+0.85 Vd/2 sin(Ï1t), where Ï1=2Ï x 60 rad/s
    12·1 answer
  • A hollow pipe is submerged in a stream of water so that the length of the pipe is parallel to the velocity of the water. If the
    9·1 answer
  • How much memory can a 32 -bit processor support ?
    13·1 answer
  • Imagine a cantilever beam fixed at one end with a mass = m and a length = L. If this beam is subject to an inertial force and a
    6·1 answer
  • The difference in potential energy between an electron at the negative terminal and one at the positive terminal is called the _
    11·1 answer
  • First real answer i’ll give Brainlyist
    12·1 answer
  • What happens to the electrolyte, during discharging?
    9·1 answer
  • QUICK ASAP
    5·1 answer
  • the left rear brake drum is scored, but the right rear drum looks as good as new. technician a says the left-side drum should be
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!