1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sasho [114]
3 years ago
11

The diameter of a cylindrical water tank is Do and its height is H. The tank is filled with water, which is open to the atmosphe

re. An orifice of diameter D with a smooth entrance (i.e., negligible losses) is open at the bottom. Develop a relation for the time required for the tank (a) to empty halfway (5-point) and (b) to empty completely (5-point).
Engineering
1 answer:
Sonbull [250]3 years ago
3 0

Answer:

a. The time required for the tank to empty halfway is presented as follows;

t_1   =   \dfrac{D_0^2 }{D^2 } \cdot \sqrt{ \dfrac{H}{g} } \cdot \left (\sqrt{2} -1 \right)

b. The time it takes for the tank to empty the remaining half is presented as follows;

t_2  = { \dfrac{ D_0^2  }{D} \cdot\sqrt{\dfrac{H}{g} }

The total time 't', is presented as follows;

t =  \sqrt{2}  \cdot \dfrac{D_0^2 }{D^2 } \cdot \sqrt{ \dfrac{H}{g} }

Explanation:

a. The diameter of the tank = D₀

The height of the tank = H

The diameter of the orifice at the bottom = D

The equation for the flow through an orifice is given as follows;

v = √(2·g·h)

Therefore, we have;

\dfrac{P_1}{\gamma} + z_1 + \dfrac{v_1}{2 \cdot g} = \dfrac{P_2}{\gamma} + z_2 + \dfrac{v_2}{2 \cdot g}

\left( \dfrac{P_1}{\gamma} -\dfrac{P_2}{\gamma} \right) + (z_1 - z_2) + \dfrac{v_1}{2 \cdot g} =  \dfrac{v_2}{2 \cdot g}

Where;

P₁ = P₂ = The atmospheric pressure

z₁ - z₂ = dh (The height of eater in the tank)

A₁·v₁ = A₂·v₂

v₂ = (A₁/A₂)·v₁

A₁ = π·D₀²/4

A₂ = π·D²/4

A₁/A₂ = D₀²/(D²) = v₂/v₁

v₂ = (D₀²/(D²))·v₁ = √(2·g·h)

The time, 'dt', it takes for the water to drop by a level, dh, is given as follows;

dt = dh/v₁ = (v₂/v₁)/v₂·dh = (D₀²/(D²))/v₂·dh = (D₀²/(D²))/√(2·g·h)·dh

We have;

dt = \dfrac{D_0^2}{D} \cdot\dfrac{1}{\sqrt{2\cdot g \cdot h} } dh

The time for the tank to drop halfway is given as follows;

\int\limits^{t_1}_0 {} \,  dt = \int\limits^h_{\frac{h}{2} } { \dfrac{D_0^2}{D} \cdot\dfrac{1}{\sqrt{2\cdot g \cdot h} } } \, dh

t_1  =\left[{ \dfrac{D_0^2}{D\cdot \sqrt{2\cdot g} } \cdot\dfrac{h^{-\frac{1}{2} +1}}{-\frac{1}{2} +1 } \right]_{\frac{H}{2} }^{H} =\left[ { \dfrac{D_0^2 \cdot 2\cdot \sqrt{h} }{D\cdot \sqrt{2\cdot g} } \right]_{\frac{H}{2} }^{H} = { \dfrac{2 \cdot D_0^2 }{D\cdot \sqrt{2\cdot g} } \cdot \left(\sqrt{H} - \sqrt{\dfrac{H}{2} } \right)

t_1   = { \dfrac{2 \cdot D_0^2 }{D^2\cdot \sqrt{2\cdot g} } \cdot \left(\sqrt{H} - \sqrt{\dfrac{H}{2} } \right) =  { \dfrac{\sqrt{2}  \cdot D_0^2 }{D^2\cdot \sqrt{ g} } \cdot \left(\sqrt{H} - \sqrt{\dfrac{H}{2} } \right)

t_1   =   { \dfrac{\sqrt{2}  \cdot D_0^2 }{D^2\cdot \sqrt{ g} } \cdot \left(\sqrt{H} - \sqrt{\dfrac{H}{2} } \right) = { \dfrac{D_0^2 }{D^2\cdot \sqrt{ g} } \cdot \left(\sqrt{2 \cdot H} - \sqrt{{H} } \right) =\dfrac{D_0^2 }{D^2 } \cdot \sqrt{ \dfrac{H}{g} } \cdot \left (\sqrt{2} -1 \right)The time required for the tank to empty halfway, t₁, is given as follows;

t_1   =   \dfrac{D_0^2 }{D^2 } \cdot \sqrt{ \dfrac{H}{g} } \cdot \left (\sqrt{2} -1 \right)

(b) The time it takes for the tank to empty completely, t₂, is given as follows;

\int\limits^{t_2}_0 {} \,  dt = \int\limits^{\frac{h}{2} }_{0 } { \dfrac{D_0^2}{D} \cdot\dfrac{1}{\sqrt{2\cdot g \cdot h} } } \, dh

t_2  =\left[{ \dfrac{D_0^2}{D\cdot \sqrt{2\cdot g} } \cdot\dfrac{h^{-\frac{1}{2} +1}}{-\frac{1}{2} +1 } \right]_{0}^{\frac{H}{2} } =\left[ { \dfrac{D_0^2 \cdot 2\cdot \sqrt{h} }{D\cdot \sqrt{2\cdot g} } \right]_{0 }^{\frac{H}{2} } = { \dfrac{2 \cdot D_0^2 }{D\cdot \sqrt{2\cdot g} } \cdot \left( \sqrt{\dfrac{H}{2} } -0\right)

t_2  = { \dfrac{ D_0^2  }{D} \cdot\sqrt{\dfrac{H}{g} }

The time it takes for the tank to empty the remaining half, t₂, is presented as follows;

t_2  = { \dfrac{ D_0^2  }{D} \cdot\sqrt{\dfrac{H}{g} }

The total time, t, to empty the tank is given as follows;

t = t_1 + t_2 =   \dfrac{D_0^2 }{D^2 } \cdot \sqrt{ \dfrac{H}{g} } \cdot \left (\sqrt{2} -1 \right) + t_2  = { \dfrac{ D_0^2  }{D} \cdot\sqrt{\dfrac{H}{g} } =  \dfrac{D_0^2 }{D^2 } \cdot \sqrt{ \dfrac{H}{g} } \cdot \sqrt{2}

t =  \sqrt{2}  \cdot \dfrac{D_0^2 }{D^2 } \cdot \sqrt{ \dfrac{H}{g} }

You might be interested in
CS3733: Homework/Practice 05 Suppose we would like to write a program called monitor which allows two other programs to communic
valina [46]

Answer:

#include<stdio.h>

#include<stdlib.h>

#include<unistd.h>

#include<sys/types.h>

#include<string.h>

#include<pthread.h>

//#include<sys/wait.h>

int main(int argc, char** argv)

{

int fd1[2];

int fd2[2];

int fd3[2];

int fd4[2];

char message[] = "abcd";

char input_str[100];

pid_t p,q;

if (pipe(fd1)==-1)

{

 fprintf(stderr, "Pipe Failed" );

 return 1;

}

if (pipe(fd2)==-1)

{

 fprintf(stderr, "Pipe Failed" );

 return 1;

}

if (pipe(fd3)==-1)

{

 fprintf(stderr, "Pipe Failed" );

 return 1;

}

if (pipe(fd4)==-1)

{

 fprintf(stderr, "Pipe Failed" );

 return 1;

}

p = fork();

if (p < 0)

{

 fprintf(stderr, "fork Failed" );

return 1;

}

// child process-1

else if (p == 0)

{

 close(fd1[0]);// Close reading end of first pipe

 char concat_str[100];

 printf("\n\tEnter meaaage:"):

 scanf("%s",concat_str);

 write(fd1[1], concat_str, strlen(concat_str)+1);

 // Concatenate a fixed string with it

 int k = strlen(concat_str);

 int i;

 for (i=0; i<strlen(fixed_str); i++)

 {

  concat_str[k++] = fixed_str[i];

 }

 concat_str[k] = '\0';//string ends with '\0'

 // Close both writting ends

 close(fd1[1]);

 wait(NULL);

//.......................................................................

 close(fd2[1]);

 read(fd2[0], concat_str, 100);

 if(strcmp(concat_str,"invalid")==0)

 {

 printf("\n\tmessage not send");

 }

 else

 {

  printf("\n\tmessage send to prog_2(child_2).");

 }

 close(fd2[0]);//close reading end of pipe 2

 exit(0);

}

else

{

 close(fd1[1]);//Close writting end of first pipe

 char concat_str[100];

 read(fd1[0], concal_str, strlen(concat_str)+1);

 close(fd1[0]);

 close(fd2[0]);//Close writing end of second pipe

 if(/*check if msg is valid or not*/)

 {

  //if not then

  write(fd2[1], "invalid",sizeof(concat_str));

  return 0;

 }

 else

 {

  //if yes then

  write(fd2[1], "valid",sizeof(concat_str));

  close(fd2[1]);

  q=fork();//create chile process 2

  if(q>0)

  {

   close(fd3[0]);/*close read head offd3[] */

   write(fd3[1],concat_str,sizeof(concat_str);//write message by monitor(main process) using fd3[1]

   close(fd3[1]);

   wait(NULL);//wait till child_process_2 send ACK

   //...........................................................

   close(fd4[1]);

   read(fd4[0],concat_str,100);

   close(fd4[0]);

   if(sctcmp(concat_str,"ack")==0)

   {

    printf("Messageof child process_1 is received by child process_2");

   }

   else

   {

    printf("Messageof child process_1 is not received by child process_2");

   }

  }

  else

  {

   if(p<0)

   {

    printf("Chiile_Procrss_2 not cheated");

   }

   else

   {

     

    close(fd3[1]);//Close writing end of first pipe

    char concat_str[100];

    read(fd3[0], concal_str, strlen(concat_str)+1);

    close(fd3[0]);

    close(fd4[0]);//Close writing end of second pipe

    write(fd4[1], "ack",sizeof(concat_str));

     

   }

  }

 }

 close(fd2[1]);

}

}

8 0
3 years ago
A square-thread power screw is used to raise or lower the basketball board in a gym, the weight of which is W = 100kg. See the f
KIM [24]

Answer:

power = 49.95 W

and it is self locking screw

Explanation:

given data

weight W = 100 kg = 1000 N

diameter d = 20mm

pitch p = 2mm

friction coefficient of steel f = 0.1

Gravity constant is g = 10 N/kg

solution

we know T is

T = w tan(α + φ ) \frac{dm}{2}     ...................1

here dm is = do - 0.5 P

dm = 20 - 1

dm = 19 mm

and

tan(α) = \frac{L}{\pi dm}      ...............2

here lead L = n × p

so tan(α) = \frac{2\times 2}{\pi 19}

α = 3.83°  

and

f = 0.1

so tanφ = 0.1

so that φ = 5.71°

and  now we will put all value in equation 1 we get

T = 1000 × tan(3.83 + 5.71 ) \frac{19\times 10^{-3}}{2}  

T = 1.59 Nm

so

power = \frac{2\pi N \ T }{60}     .................3

put here value

power = \frac{2\pi \times 300\times 1.59}{60}

power = 49.95 W

and

as φ > α

so it is self locking screw

 

8 0
3 years ago
The critical resolved shear stress for a metal is 39 MPa. Determine the maximum possible yield strength (in MPa) for a single cr
damaskus [11]

Answer:

78 MPa

Explanation:

Given that the critical resolved shear stress for a metal is 39 MPa, the maximum possible yield strength for a single crystal of this metal is twice the critical resolved shear stress for the metal. The maximum yield yield strength for a single crystal of this metal that is pulled in tension (\sigma_y) is given as:

\sigma_y=2*critical\ resolved\ shear\ stress(\tau_{css})\\\\\sigma_y=2*\tau_{css}\\\\\sigma_y=2*39\\\\\sigma_y=78\ MPa

4 0
3 years ago
If im 14 and your 14 what does that equal
Karo-lina-s [1.5K]

Answer:

hmmmmmmmmmmmmmmmmmmmmmmm

Explanation:

4 0
3 years ago
Read 2 more answers
Which two statements about professional technical jobs in the energy industry are correct?
Tanya [424]
The answer is both B and D
4 0
3 years ago
Read 2 more answers
Other questions:
  • Given the unity feedback system
    5·1 answer
  • A hollow steel tube with an inside diameter of 100 mm must carry a tensile load of 400 kN. Determine the outside diameter of the
    12·2 answers
  • 2. One of the many methods used for drying air is to cool the air below the dew point so that condensation or freezing of the mo
    12·1 answer
  • Which of the following is true of dead zones? a. They are formed when a volcanic eruption covers the soil with ash. b. They are
    15·1 answer
  • A block of ice weighing 20 lb is taken from the freezer where it was stored at -15"F. How many Btu of heat will be required to c
    15·1 answer
  • What is a beam on a bridge? what does it do?
    6·1 answer
  • At what distance from the Earth’s surface is a 10,000 kg satellite if its potential energy is equal to –5.58 x 1011 J? (choose t
    5·1 answer
  • Select the correct answer.
    11·1 answer
  • Sketches are a very efficient way to share ideas.<br> True<br> False
    13·2 answers
  • You insert a dielectric into an air-filled capacitor. How does this affect the energy stored in the capacitor?.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!