1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sasho [114]
3 years ago
11

The diameter of a cylindrical water tank is Do and its height is H. The tank is filled with water, which is open to the atmosphe

re. An orifice of diameter D with a smooth entrance (i.e., negligible losses) is open at the bottom. Develop a relation for the time required for the tank (a) to empty halfway (5-point) and (b) to empty completely (5-point).
Engineering
1 answer:
Sonbull [250]3 years ago
3 0

Answer:

a. The time required for the tank to empty halfway is presented as follows;

t_1   =   \dfrac{D_0^2 }{D^2 } \cdot \sqrt{ \dfrac{H}{g} } \cdot \left (\sqrt{2} -1 \right)

b. The time it takes for the tank to empty the remaining half is presented as follows;

t_2  = { \dfrac{ D_0^2  }{D} \cdot\sqrt{\dfrac{H}{g} }

The total time 't', is presented as follows;

t =  \sqrt{2}  \cdot \dfrac{D_0^2 }{D^2 } \cdot \sqrt{ \dfrac{H}{g} }

Explanation:

a. The diameter of the tank = D₀

The height of the tank = H

The diameter of the orifice at the bottom = D

The equation for the flow through an orifice is given as follows;

v = √(2·g·h)

Therefore, we have;

\dfrac{P_1}{\gamma} + z_1 + \dfrac{v_1}{2 \cdot g} = \dfrac{P_2}{\gamma} + z_2 + \dfrac{v_2}{2 \cdot g}

\left( \dfrac{P_1}{\gamma} -\dfrac{P_2}{\gamma} \right) + (z_1 - z_2) + \dfrac{v_1}{2 \cdot g} =  \dfrac{v_2}{2 \cdot g}

Where;

P₁ = P₂ = The atmospheric pressure

z₁ - z₂ = dh (The height of eater in the tank)

A₁·v₁ = A₂·v₂

v₂ = (A₁/A₂)·v₁

A₁ = π·D₀²/4

A₂ = π·D²/4

A₁/A₂ = D₀²/(D²) = v₂/v₁

v₂ = (D₀²/(D²))·v₁ = √(2·g·h)

The time, 'dt', it takes for the water to drop by a level, dh, is given as follows;

dt = dh/v₁ = (v₂/v₁)/v₂·dh = (D₀²/(D²))/v₂·dh = (D₀²/(D²))/√(2·g·h)·dh

We have;

dt = \dfrac{D_0^2}{D} \cdot\dfrac{1}{\sqrt{2\cdot g \cdot h} } dh

The time for the tank to drop halfway is given as follows;

\int\limits^{t_1}_0 {} \,  dt = \int\limits^h_{\frac{h}{2} } { \dfrac{D_0^2}{D} \cdot\dfrac{1}{\sqrt{2\cdot g \cdot h} } } \, dh

t_1  =\left[{ \dfrac{D_0^2}{D\cdot \sqrt{2\cdot g} } \cdot\dfrac{h^{-\frac{1}{2} +1}}{-\frac{1}{2} +1 } \right]_{\frac{H}{2} }^{H} =\left[ { \dfrac{D_0^2 \cdot 2\cdot \sqrt{h} }{D\cdot \sqrt{2\cdot g} } \right]_{\frac{H}{2} }^{H} = { \dfrac{2 \cdot D_0^2 }{D\cdot \sqrt{2\cdot g} } \cdot \left(\sqrt{H} - \sqrt{\dfrac{H}{2} } \right)

t_1   = { \dfrac{2 \cdot D_0^2 }{D^2\cdot \sqrt{2\cdot g} } \cdot \left(\sqrt{H} - \sqrt{\dfrac{H}{2} } \right) =  { \dfrac{\sqrt{2}  \cdot D_0^2 }{D^2\cdot \sqrt{ g} } \cdot \left(\sqrt{H} - \sqrt{\dfrac{H}{2} } \right)

t_1   =   { \dfrac{\sqrt{2}  \cdot D_0^2 }{D^2\cdot \sqrt{ g} } \cdot \left(\sqrt{H} - \sqrt{\dfrac{H}{2} } \right) = { \dfrac{D_0^2 }{D^2\cdot \sqrt{ g} } \cdot \left(\sqrt{2 \cdot H} - \sqrt{{H} } \right) =\dfrac{D_0^2 }{D^2 } \cdot \sqrt{ \dfrac{H}{g} } \cdot \left (\sqrt{2} -1 \right)The time required for the tank to empty halfway, t₁, is given as follows;

t_1   =   \dfrac{D_0^2 }{D^2 } \cdot \sqrt{ \dfrac{H}{g} } \cdot \left (\sqrt{2} -1 \right)

(b) The time it takes for the tank to empty completely, t₂, is given as follows;

\int\limits^{t_2}_0 {} \,  dt = \int\limits^{\frac{h}{2} }_{0 } { \dfrac{D_0^2}{D} \cdot\dfrac{1}{\sqrt{2\cdot g \cdot h} } } \, dh

t_2  =\left[{ \dfrac{D_0^2}{D\cdot \sqrt{2\cdot g} } \cdot\dfrac{h^{-\frac{1}{2} +1}}{-\frac{1}{2} +1 } \right]_{0}^{\frac{H}{2} } =\left[ { \dfrac{D_0^2 \cdot 2\cdot \sqrt{h} }{D\cdot \sqrt{2\cdot g} } \right]_{0 }^{\frac{H}{2} } = { \dfrac{2 \cdot D_0^2 }{D\cdot \sqrt{2\cdot g} } \cdot \left( \sqrt{\dfrac{H}{2} } -0\right)

t_2  = { \dfrac{ D_0^2  }{D} \cdot\sqrt{\dfrac{H}{g} }

The time it takes for the tank to empty the remaining half, t₂, is presented as follows;

t_2  = { \dfrac{ D_0^2  }{D} \cdot\sqrt{\dfrac{H}{g} }

The total time, t, to empty the tank is given as follows;

t = t_1 + t_2 =   \dfrac{D_0^2 }{D^2 } \cdot \sqrt{ \dfrac{H}{g} } \cdot \left (\sqrt{2} -1 \right) + t_2  = { \dfrac{ D_0^2  }{D} \cdot\sqrt{\dfrac{H}{g} } =  \dfrac{D_0^2 }{D^2 } \cdot \sqrt{ \dfrac{H}{g} } \cdot \sqrt{2}

t =  \sqrt{2}  \cdot \dfrac{D_0^2 }{D^2 } \cdot \sqrt{ \dfrac{H}{g} }

You might be interested in
ferry boat steamed along at 8 mph through calm seas, passenger casey exercised by walking the perimeter of the rectangular deck,
olga_2 [115]
Tell me why i got this question got it right and now won’t remember but i’ll get back at you when i remember
6 0
3 years ago
What type of circles have two or more circles with different center points?
Assoli18 [71]

Answer:

Concentric circles

Explanation:

Concentric circles are two or more circles which have the same center point. The region between two concentric circles is called an annulus.

6 0
3 years ago
Read 2 more answers
to determine cam ring speed you must use a ___________________,____________________or a________________
saul85 [17]

Answer:

=> The total numbers of cylinders on the engine.

=> Total number of lobes in the cam ring.

=> The direction at which the cam ring rotates.

Explanation:

A cam is a kind of ring and a device that is being used in engines. One or the main purpose of using cams in engines us because it helps in the change or transformation of the rotational movement of the engine to a translational one. Instead of using a cam ring, a cam roller can be used in place.

There are three things that can be used to to determine the speed of cam ring speed and they are given below as;

=> The total numbers of cylinders on the engine.

=> The Total number of lobes in the cam ring.

=> The direction at which the cam ring rotates.

5 0
3 years ago
Viết một đoạn văn nói về tình bạn
inn [45]

Answer:

Một người bạn luôn quan trọng trong cuộc sống của chúng ta, và mọi người đều thích sự bầu bạn của một người bạn. Tình bạn thật sự rất khó để có được. Trải qua mọi khó khăn, thất bại, người bạn thủy chung sẽ luôn sát cánh. Họ sẽ quan tâm đến bạn mọi lúc, và có được một tình bạn đích thực là một món quà thực sự Có được một người bạn đồng hành trong cuộc sống của bạn là rất quan trọng. Một người có thể hiểu được cảm xúc của bạn, ủng hộ bạn và sát cánh bên bạn trong những lúc tốt và xấu ngay cả khi mọi người quay lưng lại với bạn, một người như thế thật đáng quý biết bao. Đây là người mà chúng tôi gọi là bạn thân nhất của mình.

Explanation:

I hope that helps you

7 0
3 years ago
an object of mass 2kg is released from a top of inclined plane 30° and height 6m. The coefficient of kinetic friction of the sur
mel-nik [20]

Explanation:

1) Work done = force x distance x cos(θ)

= 0.15 x 6 x cos(30)

= 0.779

2) Ek = ½mv²

v = acceleration due to gravity so 9.81

Ek = ½(2)(9.81)²

Ek = 96.2361

3) v = (√(2em)) / m

= (√(2(96.2361)(2)) / 2

= 9.81 so especially with no time given, I can only assume the acceleration due to gravity but take it with a pinch of salt.

5 0
2 years ago
Other questions:
  • Water that has evaporated returns to earth as
    11·2 answers
  • You are reassembling a gearbox. The output
    9·1 answer
  • Hydrogen gas (density = 1.165 kg/m^3 ) is stored at 25°C in a permeable cylindrical container which has an outer diameter of 0.2
    11·1 answer
  • The National Electrical Code specifies that receptacles in certain areas of a house must have ground fault circuit interrupter p
    9·1 answer
  • Learning Goal: To use fundamental geometric and statics methods to determine the state of plane stress at the point on an elemen
    8·1 answer
  • A seasonal color change helps animals in the Taiga to
    11·1 answer
  • While discussing PCM monitor tests: Technician A says that some monitors only run after another monitor completes. Technician B
    10·1 answer
  • I am trying to test out the software Classroom relay and I am just ask if there is any way kids can stop Classroom relay form se
    9·2 answers
  • If 360 Joules of work is needed to move a crate a distance of 4 meters, how much force was applied of the crate?​
    15·1 answer
  • The oxygen consumption of an activated sludge plant is 60 g O2/L.d for the degradation of
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!