Density= mass/volume
16.39g/18.00mL = 0.9105 g/mL
Make sure to use the correct number of significant figures (4)
Answer:
A) t = 22.5 min and B) t = 29.94 min
Explanation:
Initial concentration, [A]₀ = 100
Final concentration = 100 -75 = 25
Time = 45 min
A) First order reaction
ln[A] − ln[A]₀ = −kt
Solving for k;
ln[25] − ln[100] = - 45k
-1.386 = -45k
k = 0.0308 min-1
How long after its start will the reaction be 50% complete?
Initial concentration, [A]₀ = 100
Final concentration, [A] = 100 -50 = 50
Time = ?
ln[A] − ln[A]₀ = −kt
Solving for k;
ln[50] − ln[100] = - 0.0308 * t
-0.693 = -0.0308 * t
t = 22.5 min
B) Zero Order
[A] = [A]₀ − kt
Using the values from the initial reaction and solving for k, we have;
25 = 100 - k(45)
-75 = -45k
k = 1.67 M min-1
How long after its start will the reaction be 50% complete?
Initial concentration, [A]₀ = 100
Final concentration, [A] = 100 -50 = 50
Time = ?
[A] = [A]₀ − kt
50 = 100 - (1.67)t
-50 = - 1.67t
t = 29.94 min
Photosynthesis and cellular respiration go hand and hand. Remember the two equations are just a reverse of the opposite equation.
Cellular Respiration-
C₆H₁₂O₆ + 6O₂ (Yeilds or Makes) 6CO₂ + 6H₂O + ATP (Or Energy)
Photosynthesis-
6CO₂ + 6H₂O + ATP (Or Sunlight) (Yeilds or Makes) C₆H₁₂O₆ + 6O<span>₂
</span>
When a plant goes through photosynthesis it produces oxygen as a waste product, which you should know is what animals use to breathe, well when animals use oxygen in the process, they also make a waste product which happens to be Carbon Dioxide, which a plant uses to make glucose during photosynthesis, so if we didin't have one we wouldn't have the other.
Answer:
B C A
Explanation:
because as you pour the blue stuff in it will straight up go to the bottom (and has less blue coloring) Then it will go to the top (lil more blue coloring) then eventually the whole jar will be blue
hope this helps you out bro
Answer: The yield of dibromide product will be approximately one‑half of the expected yield.
Explanation: