Answer:
<h2>Generator </h2>
Explanation:
A generator converts mechanical energy into electrical energy
Answer:
a)temperature=69.1C
b)3054Kw
Explanation:
Hello!
To solve this problem follow the steps below, the complete procedure is in the attached image
1. draw a complete outline of the problem
2. to find the temperature at the turbine exit use termodinamic tables to find the saturation temperature at 30kPa
note=Through laboratory tests, thermodynamic tables were developed, these allow to know all the thermodynamic properties of a substance (entropy, enthalpy, pressure, specific volume, internal energy etc ..)
through prior knowledge of two other properties such as pressure and temperature.
3. Using thermodynamic tables find the enthalpy and entropy at the turbine inlet, then find the ideal enthalpy using the entropy of state 1 and the outlet pressure = 30kPa
4. The efficiency of the turbine is defined as the ratio between the real power and the ideal power, with this we find the real enthalpy.
Note: Remember that for a turbine with a single input and output, the power is calculated as the product of the mass flow and the difference in enthalpies.
5. Find the real power of the turbine
These parts are commonly called carburetor emulsion tubes. These tubes maintain the air-fuel ratio at different speeds.
The carburetor is a device of the combustion engine power supply system that mixes fuel and air in order to facilitate internal combustion.
The carburetor emulsion tubes are tubes that maintain the air-fuel ratio at different velocities.
These tubes (carburetor emulsion tubes) are small brass cylinders where the metering needle slides into them.
Learn more about carburetors here:
brainly.com/question/4237015
Structure Of The Atom: Our current model of the atom can be broken down into three constituents parts – protons, neutron, and electrons. Each of these parts has an associated charge, with protons carrying a positive charge, electrons having a negative charge, and neutrons possessing no net charge.