Answer:

Explanation:
First, we will find actual properties at given inlet and outlet states by the use of steam tables:
AT INLET:
At 4MPa and 350°C, from the superheated table:
h₁ = 3093.3 KJ/kg
s₁ = 6.5843 KJ/kg.K
AT OUTLET:
At P₂ = 125 KPa and steam is saturated in vapor state:
h₂ =
= 2684.9 KJ/kg
Now, for the isentropic enthalpy, we have:
P₂ = 125 KPa and s₂ = s₁ = 6.5843 KJ/kg.K
Since s₂ is less than
and greater than
at 125 KPa. Therefore, the steam is in a saturated mixture state. So:

Now, we will find
(enthalpy at the outlet for the isentropic process):

Now, the isentropic efficiency of the turbine can be given as follows:

Hi
Acetylene and propane
I hope this help you!
The total number of trips that the vehicle has to make based on the given sequence of operation is 120 trips.
<em>"Your</em><em> </em><em>question is not complete, it seems to be missing the following information;"</em>
The sequence of operation is A - E - D - C - B - A - F
The given parameters;
- <em>number of pieces that will flow from the first machine A to machine F, = 2,000 pieces</em>
- <em>initial unit load specified in the first machine, L₁ = 50</em>
- <em>final unit load, L₂ = 100 </em>
- <em>the capacity of the vehicle = 1 unit load</em>
<em />
The given sequence of operation of the vehicle;
A - E - D - C - B - A - F
<em>the vehicle makes </em><em>6 trips</em><em> for </em><em>100</em><em> unit </em><em>loads</em>
The total number of trips that the vehicle has to make, in order to transport the 2000 pieces of the load given, is calculated as follows.
100 unit loads ----------------- 6 trips
2000 unit loads --------------- ?

Thus, the total number of trips that the vehicle has to make based on the given sequence of operation is 120 trips.
Learn more here:brainly.com/question/21468592
Carbonation is more of a healer to the engine