Part of the answer you are looking for may be- Molecules overcome attractions easily and at high temperatures, move faster- (paraphrased from Google) Since the question asked was not provided with the statements as proposed in the original question, I cannot give you an exact answer. I did what i could do, hope this helps!
<span>6.50x10^3 calories.
Now we have 4 pieces of data and want a single result. The data is:
Mass: 100.0 g
Starting temperature: 25.0°C
Ending temperature: 31.5°C
Specific heat: 1.00 cal/(g*°C)
And we want a result with the unit "cal". Now you need to figure out what set of math operations will give you the desired result. Turns out this is quite simple. First, you need to remember that you can only add or subtract things that have the same units. You may multiply or divide data items with different units and the units can combine or cancel each other. So let's solve this:
Let's start with specific heat with the unit "cal/(g*°C)". The cal is what we want, but we'ld like to get rid of the "/(g*°C)" part. So let's multiply by the mass:
1.00 cal/(g*°C) * 100.0 g = 100.0 cal/°C
We now have a simpler unit of "cal/°C", so we're getting closer. Just need to cancel out the "/°C" part, which we can do with a multiplication. But we have 2 pieces of data using "°C". We can't multiply both of them, that would give us "cal*°C" which we don't want. But we need to use both pieces. And since we're interested in the temperature change, let's subtract them. So
31.5°C - 25.0°C = 6.5°C
So we have a 6.5°C change in temperature. Now let's multiply:
6.5°C * 100.0 cal/°C = 6500.0 cal
Since we only have 3 significant digits in our least precise piece of data, we need to round the result to 3 significant figures. 6500 only has 2 significant digits, and 6500. has 4. But we can use scientific notation to express the result as 6.50x10^3 which has the desired 3 digits of significance. So the result is 6.50x10^3 calories.
Just remember to pay attention to the units in the data you have. They will pretty much tell you exactly what to add, subtract, multiply, or divide.</span>
Reference table J?
In general though reactions happen when one element wants to replace another element in another molecule/compound. So in this case you are essentially looking for the most reactive metal of the 4 choices. Elements become more reactive as you go down the periodic table, and metals become more reactive as you move left along the period, meaning Alkali metals are the most reactive metals, and Francium is the most reactive metal.
Based on this knowledge we can assume that Potassium is the most reactive of the choices and thus most readily reacts with HCl to produce H2 gas. And if you want prood check out this video!
https://www.youtube.com/watch?v=53T5WZHQ_Ck