Answer:
type the question brainly, someone already answered
Explanation:
The freezing point depression is a colligative property which means that it is proportional to the number of particles dissolved.
The number of particles dissolved depends on the dissociation constant of the solutes, when theyt are ionic substances.
If you have equal concentrations of two solutions on of which is of a ionic compound and the other not, then the ionic soluton will contain more particles (ions) and so its freezing point will decrease more (will be lower at end).
In this way you can compare the freezing points of solutions of KCl, Ch3OH, Ba(OH)2, and CH3COOH, which have the same concentration.
As I explained the solution that produces more ions will exhibit the greates depression of the freezing point, leading to the lowest freezing point.
In this case, Ba(OH)2 will produce 3 iones, while KCl will produce 2, CH3OH will not dissociate into ions, and CH3COOH will have a low dissociation constant.
Answer: Then, you can predict that Ba(OH)2 solution has the lowest freezing point.
Answer:
The coefficient for PH3 is 8. Option D is correct.
Explanation:
Step 1: The unbalanced equation
P2H4(g) ⇆ PH3(g) + P4(s)
Step 2: Balancing the equation
P2H4(g) ⇆ PH3(g) + P4(s)
On the left side we have 4x H (in P2H4), on the right side we have 3x H (in PH3). To balance the amount of H on both sides, we have to multiply P2H4 on the left side by 3 and PH3 on the right by 4.
3P2H4(g
) ⇆ 4PH3(g) + P4(s)
On the left side we have 6x P (in 3P2H4) on the right side we have 8x P (4x in 4PH3 and 4x in P4). To balance the amount of P on bot hsides, we have to multiply 3P2H4 by 2 and 4PH3 also by 2. Now the equation is balanced
6P2H4(g
) ⇆ 8PH3(g) + P4(s)
The coefficient for PH3 is 8. Option D is correct.
Answer:
The chemical reaction between the citric acid and sodium bicarbonate
Explanation: