Answer:
'An ion has a non-zero electric charge. A radical has an atom with unfilled electron shells and so is very reactive, but is electrically neutral.'
'Atoms are single neutral particles. Molecules are neutral particles made of two or more atoms bonded together.'
'The primary difference that lies between these organic compounds and inorganic compounds is that organic compounds always have a carbon atom while most of the inorganic compounds do not contain the carbon atom in them.'
We will get the molality from this formula:
Molality = no.of moles of solute / Kg of solvent
So first we need the no.of moles of KNO3 = the mass of KNO3 / molar mass of KNO3
no.of moles of KNO3 = 175 / 101.01 = 1.73 mol
By substitution in the molality formula:
∴ molality = 1.73 / (750/1000) = 2.3 Molal
Answer:
Explanation:
The amine functional group is obtained by subsititution of one or more hydrogen atoms in the ammonia compound.
Ammonia is NH₃.
Then,
- by substituting one hydrogen you obtain R - NH₂.
- by substituting two hydrogens you obtain R' - NH - R''
- by subsituting the three hydrogens you obtain:
R'''
|
R' - N - R''
In this case, the three subsitutuents are silyl groups. The silyl group is derived form silane and is SiH₃. So, the tcompound <em>trisilylamine</em> is:
SiH₃
|
SiH₃ - N - SiH₃
Thus, you can count 3 hydrogen atoms for every silylgroup for a total of <u><em>9 hydrogen atoms in each molecule of trisilylamine.</em></u>
Frenkel defect is a defect in crystalline solids in which an atom is displaced from its lattice position to an interstitial space. This creates a vacant space at the original site and an interstitial defect at the new site within the same element. This defect does not affect the chemical properties of the compound. This defect usually occur in ionic solids with large size difference between the anion and cation.
LiCl does not exhibit Frenkel defect because the size difference between the anion and the cation of the compound is very small.
Mole<span>: the amount of a substance that contains 6.02 x </span>10<span>. 23 respective particles of that substance. Avogadro's number: 6.02 x </span>10<span>. 23. Molar Mass: the mass of one </span>mole<span> of an element. CONVERSION FACTORS: 1 </span>mole<span> = 6.02 x </span>10<span>. 23 </span>atoms<span> 1 </span>mole<span> = </span>atomic<span> mass (g). Try: 1. How </span>many atoms<span> are in 6.5</span>moles<span> of zinc</span>