1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
algol [13]
2 years ago
11

Air in a large tank at 300C and 400kPa, flows through a converging diverging nozzle with throat diameter 2cm. It exits smoothly

at a Mach number 2.8. According to one-dimensional isentropic theory, what is
(a) exit diameter and
(b) mass flow?
Engineering
1 answer:
-Dominant- [34]2 years ago
5 0

Answer:

The answer is "3.74 \ cm\ \ and \ \ 0.186 \frac{kg}{s}"

Explanation:

Given data:  

Initial temperature of tank T_1 = 300^{\circ}\ C= 573 K

Initial pressure of tank P_1= 400 \ kPa

Diameter of throat d* = 2 \ cm

Mach number at exit M = 2.8

In point a:

calculating the throat area:

A*=\frac{\pi}{4} \times d^2

      =\frac{\pi}{4} \times 2^2\\\\=\frac{\pi}{4} \times 4\\\\=3.14 \ cm^2

Since, the Mach number at throat is approximately half the Mach number at exit.  

Calculate the Mach number at throat.  

M*=\frac{M}{2}\\\\=\frac{2.8}{2}\\\\=1.4

Calculate the exit area using isentropic flow equation.

\frac{A}{A*}= (\frac{\gamma -1}{2})^{\frac{\gamma +1}{2(\gamma -1)}}  (\frac{1+\frac{\gamma -1}{2} M*^2}{M*})^{\frac{\gamma +1}{2(\gamma -1)}}

Here: \gamma is the specific heat ratio. Substitute the values in above equation.

\frac{A}{3.14}= (\frac{1.4-1}{2})^{-\frac{1.4+1}{2(1.4 -1)}}  (\frac{1+\frac{1.4-1}{2} (1.4)^2}{1.4})^{\frac{1.4+1}{2(1.4-1)}} \\\\A=\frac{\pi}{4}d^2 \\\\10.99=\frac{\pi}{4}d^2 \\\\d = 3.74 \ cm

exit diameter is 3.74 cm

In point b:

Calculate the temperature at throat.

\frac{T*}{T}=(1+\frac{\Gamma-1}{2} M*^2)^{-1}\\\\\frac{T*}{573}=(1+\frac{1.4-1}{2} (1.4)^2)^{-1}\\\\T*=411.41 \ K

Calculate the velocity at exit.  

V*=M*\sqrt{ \gamma R T*}

Here: R is the gas constant.  

V*=1.4 \times \sqrt{1.4 \times 287 \times 411.41}\\\\=569.21 \ \frac{m}{s}

Calculate the density of air at inlet

\rho_1 =\frac{P_1}{RT_1}\\\\=\frac{400}{ 0.287 \times 573}\\\\=2.43\  \frac{kg}{m^3}

Calculate the density of air at throat using isentropic flow equation.  

\frac{\rho}{\rho_1}=(1+\frac{\Gamma -1}{2} M*^2)^{-\frac{1}{\Gamma -1}} \\\\\frac{\rho *}{2.43}=(1+\frac{1.4-1}{2} (1.4)*^2)^{-\frac{1}{1.4-1}} \\\\\rho*= 1.045 \ \frac{kg}{m^3}

Calculate the mass flow rate.  

m= \rho* \times A* \times V*\\\\= 1.045 \times 3.14 times 10^{-4} \times 569.21\\\\= 0.186 \frac{kg}{s}

You might be interested in
True or False; If I was trying to find the Voltage of my computer, and I was given the Watts and Amps it uses, I would use Watt'
defon

Answer:

true

Explanation:

8 0
2 years ago
A 14 inch diameter pipe is decreased in diameter by 2 inches through a contraction. The pressure entering the contraction is 28
Delicious77 [7]

Answer:

5984.67N

Explanation:

A 14 inch diameter pipe is decreased in diameter by 2 inches through a contraction. The pressure entering the contraction is 28 psi and a pressure drop of 2 psi occurs through the contraction if the upstream velocity is 4.0 ft/sec. What is the magnitude of the resultant force (lbs) needed to hold the pipe in place?

from continuity equation

v1A1=v2A2

equation of continuity

v1=4ft /s=1.21m/s

d1=14 inch=.35m

d2=14-2=0.304m

A1=pi*d^2/4

0.096m^2

a2=0.0706m^2

from continuity once again

1.21*0.096=v2(0.07)

v2=1.65

force on the pipe

(p1A1- p2A2) + m(v2 – v1)

from bernoulli

p1 + ρv1^2/2 = p2 + ρv2^2/2

difference in pressure or pressure drop

p1-p2=2psi

13.789N/m^2=rho(1.65^2-1.21^2)/2

rho=21.91kg/m^3

since the pipe is cylindrical

pressure is egh

13.789=21.91*9.81*h

length of the pipe is

0.064m

AH=volume of the pipe(area *h)

the mass =rho*A*H

0.064*0.07*21.91

m=0.098kg

(193053*0.096- 179263.6* 0.07) + 0.098(1.65 – 1.21)

force =5984.67N

4 0
3 years ago
The underground cafe has an operating cash flow of $187,000 and a cash flow to creditors of $71,400 for the past year. During th
Serggg [28]

Answer:

cash flow to stockholders = $39,700

Explanation:

Operating cash flow = $187,000

cash flow to creditors = $71,400

Net working capital = $28,000

Net capital spending =  $47,900

Cash flow to stockholders = ?

CFF = operating cash flow - net working capital - net capital spending

CFF = $187,000 - $28,000 - $47,900 = $111,100

CFF = cash flow to creditors + cash flow to stockholders

cash flow to stockholders = CFF - cash flow to creditors

cash flow to stockholders = $111,100 - $71,400 = $39,700

Hence $39,700 is the amount of the cash flow to stockholders for the last year.

3 0
3 years ago
What is a Flame Front Generator?
Inessa [10]

Answer and Explanation:

Flame Front Generator: It is a ignition system which is very useful in flaring system .In this system the air and gases are mixed together and make a combustible air gas mixture. There is a flame front region where the combustion reaction takes place , it is the region where gases as like hydrogen and air mixed with each other and form combustible gases.

7 0
3 years ago
 what can be done to prevent bridges from collapsing? ( give at least two examples)
ryzh [129]

Explanation:

the owner of the bridge and some workers

4 0
2 years ago
Other questions:
  • Describe three advantages and three disadvantages of JIT?
    12·1 answer
  • A PV battery system has an end-to-end efficiency of 77%. The system is used to run an all-AC load that is run only at night. The
    11·1 answer
  • The SDS for any chemical used at a job site must be available
    6·2 answers
  • Nitrogen gas flows through a long, constant-diameter adiabatic pipe. It enters at 100 psia and 120°F and leaves at 50 psia and 7
    14·2 answers
  • Valves on steam lines are commonly encountered and you should know how they work. For most valves, the change in velocity of the
    10·1 answer
  • DO NOW: Name the three main legal categories of ownership.
    12·1 answer
  • A lab technician is ordered to take a sample of your blood. As she inserts the needle, she says, "My, you have tough skin!" What
    14·1 answer
  • Which of the following correctly explains why it would be beneficial for an engineer to become a member of the Leadership in Ene
    15·2 answers
  • A heat engine operates between a source at 477°C and a sink at 27°C. If heat is supplied to the heat engine at a steady rate of
    14·1 answer
  • Select the correct answer. The most frequent maintenance task for a car is: A. Oil changes B. Tire replacements C. Coolant chang
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!