As we know that centripetal force =mv^2/r
given data is
m = mass
v = speed
r = radius
putting values we get
= 85 x 15^2 / 20
= 956.25 N
option d is correct
Answer:
The distance traveled by the woman is 34.1m
Explanation:
Given
The initial height of the cliff
yo = 45m final, positition y = 0m bottom of the cliff
y = yo + ut -1/2gt²
u = 20.0m/s initial speed
g = 9.80m/s²
0 = 45.0 + 20×t –1/2×9.8×t²
0 = 45 +20t –4.9t²
Solving quadratically or by using a calculator,
t = 5.69s and –1.61s byt time cannot be negative so t = 5.69s
So this is the total time it takes for the ball to reach the ground from the height it was thrown.
The distance traveled by the woman is
s = vt
Given the speed of the woman v = 6.00m/s
Therefore
s = 6.00×5.69 = 34.14m
Approximately 34.1m to 3 significant figures.
Just like mass, energy, linear momentum, and electric charge, angular momentum is also conserved.
The wheel has angular momentum. I don't remember whether it's
up or down (right-hand or left-hand rule), but it's consistent with
counterclockwise rotation as viewed from above.
When you grab the wheel and stop it from spinning (relative to you),
that angular momentum has to go somewhere.
As I see it, the angular momentum transfers through you as a temporary
axis of rotation, and eventually to the merry-go-round. Finally, all the mass
of (merry-go-round) + (you) + (wheel) is rotating around the big common
axis, counterclockwise as viewed from above, and with the magnitude
that was originally all concentrated in the wheel.
1) Magnetic field
2) Electric current
3) Force
An object in motion changes position