Answer:
orbital
Explanation:
electrons are found in an orbital
Answer and Explanation:
For the following balanced reaction:
PCl₅(g) ↔ PCl₃(g) + Cl₂(g)
We can see that all reactants and products are gases, so it is an homogeneous equilibrium. The expression for the equilibrium constant Kp can be written from the partial pressures (P) of reactants and products as follows:

Where PPCl₃ is the partial pressure of PCl₃ (reactant), PCl₂ is the partial pressure of Cl₂ (reactant) and PPCl₅ is the partial pressure of PCl₅ (product).
Answer:
Group 4A (or IVA) of the periodic table includes the nonmetal carbon (C), the metalloids silicon (Si) and germanium (Ge), the metals tin (Sn) and lead (Pb), and the yet-unnamed artificially-produced element ununquadium (Uuq).
The Group 4A elements have four valence electrons in their highest-energy orbitals (ns2np2). Carbon and silicon can form ionic compounds by gaining four electrons, forming the carbide anion (C4-) and silicide anion (Si4-), but they more frequently form compounds through covalent bonding. Tin and lead can lose either their outermost p electrons to form 2+ charges (Sn2+, the stannous ion, and Pb2+, the plumbous ion) or their outermost s and p electrons to form 4+ charges (Sn4+, the stannic ion, and Pb4+, the plumbic ion).
Carbon (C, Z=6).
Carbon is most familiar as a black solid is graphite, coal, and charcoal, or as the hard, crystalline diamond form. The name is derived from the Latin word for charcoal, carbo. It is found in the Earth's crust at a concentration of 480 ppm, making it the 15th most abundant element. It is found in form of calcium carbonate, CaCO3, in minerals such as limestone, marble, and dolomite (a mixture of calcium and
Explanation:
<em><u>T</u></em><em><u>H</u></em><em><u>I</u></em><em><u>S</u></em><em><u> </u></em><em><u>A</u></em><em><u>L</u></em><em><u>L</u></em><em><u> </u></em><em><u>I</u></em><em><u> </u></em><em><u>K</u></em><em><u>N</u></em><em><u>O</u></em><em><u>W</u></em>
<u>E</u><u>N</u><u>J</u><u>O</u><u>Y</u><u> </u><u>THE</u><em><u> </u></em><em><u>A</u></em><em><u>N</u></em><em><u>S</u></em><em><u>W</u></em><em><u>E</u></em><em><u>R</u></em>
Answer:
0.282 M
General Formulas and Concepts:
<u>Chemistry - Solutions</u>
- Reading a Periodic Table
- Using Dimensional Analysis
- Molarity = moles of solute / liters of solution
Explanation:
<u>Step 1: Define</u>
5.85 g KI
0.125 L
<u>Step 2: Identify Conversions</u>
Molar Mass of K - 39.10 g/mol
Molar Mass of I - 126.90 g/mol
Molar Mass of KI - 39.10 + 126.90 = 166 g/mol
<u>Step 3: Convert</u>
<u />
= 0.035241 mol KI
<u>Step 4: Find Molarity</u>
M = 0.035241 mol KI / 0.125 L
M = 0.281928
<u>Step 5: Check</u>
<em>We are given 3 sig figs. Follow sig fig rules and round.</em>
0.281928 M ≈ 0.282 M
Answer:
Clayey soil is rich in humus and very fertile, so it is suitable for growing cereals like wheat and gram. Such soil is good at retaining water.Clayey is known to be useful for crops. Because the particle size in this soil is very fine, it has the ability to retain more amounts of water. - This makes it easy for crops to access water as it is very essential for the growth of the plant. - Some of the crops need a high amount of water in order to grow.Clayey soil is made up of fine particles that are tightly packed and increases soil density and strength. It is rich in nutrient content in the form of organic matter or humus so, it is very fertile soil. It has excellent water retaining a capacity.