I believe that the answer to the question asked above is the following
sound intensity = sound power / (4 pi R2<span>)
</span>
so if you decrease the intensity by a factor of 2 the sound wave will also decrease by a factor of 2.
Hope my answer would be a great help for you. If you have more questions feel free to ask here at Brainly.
Answer:
In constructive waves, a <u><em>greater</em></u> amplitude wave is formed. In destructive waves, a wave with a <u><em>smaller</em></u> amplitude is formed. (option A)
Explanation:
Interference is called the superposition or sum of two or more waves. Depending mainly on the wavelengths, amplitudes and the relative distance between them, there are two types of interference: constructive or destructive.
Constructive interference occurs when there are two waves of identical or similar frequency (both have motions equal to an even number of similar wavelengths) and overlap the peak of one with the peak of the other. These effects add together and make a wave of greater amplitude. All of this is possible because the waves were in the same phase in the beginning (in the same position).
Destructive interference occurs in the opposite case to constructive. When the crest of one wave overlaps the valley of the other, they cancel out since they are in different phases when they overlap (they were in different positions). That is, as in the case of constructive waves they were added, in the case of destructive waves they cancel out (subtract).
So, <u><em>In constructive waves, a greater amplitude wave is formed. In destructive waves, a wave with a smaller amplitude is formed. </em></u>
Answer:

Explanation:
given,
frequency of tuba.f = 64 Hz
Speed of train approaching, v = 8.50 m/s
beat frequency = ?
using Doppler's effect formula

v_s is the velocity of the source
v is the speed of sound, v = 340 m/s
now,

f' = 65.64 Hz
now, beat frequency is equal to



hence, beat frequency is equal to 1.64 Hz
Answer:
The time is 
The speed is 
Explanation:
From the question we are told that
The height of the cliff is 
Generally from kinematic equation we have that

before the jump the persons initial velocity is u = 0 m/s
So

=> 
Generally from kinematic equation

=> 
=> 