Answer:

Explanation:
The question: What is the net force exerted by these two charges on a third charge q_3 = 47.0 nC placed between q_1 and q_2 at x_3 = -1.240 mm ?
<u>Your answer may be positive or negative, depending on the direction of the force.</u>
Solution:
The coulomb force is given by the equation

where
is the separation between the charges
and
.
Now, in our case



The separation between charges
and
is

Therefore, the force between them is

and it is directed in the negative x-direction.
The separation between charges
and
is

therefore, the force between them is

Therefore the total force on charge
is

As the boulder falls off the cliff, the gravitational potential energy that the boulder has is converted into kinetic energy. If you do the calculations, you will see that the kinetic energy the boulder has is equal to the gravitational potential energy it had before it fell off a cliff.
Answer:
m g sin theta = force of object along incline due to gravity
N μ = frictional of incline on object where N is the normal force
N = m g cos theta force perpendicular to incline
m g sin theta = N μ = μ m g cos theta
μ = tan theta = tan 38 = .78
Answer:
10N
Explanation:
The formula for calculating the resultant is expressed as;
R = √F1²+F2²
F1 and F2 are the forces
Given
F1 = 6.0N
F2 = 8.0N
R = √6²+8²
R = √36+64
R = √100
R = 10.0N
Hence the magnitude of the net force is 10N
Hello! Gravity is lost when you reach the outside of the Earth's orbit! So you would have to overcome gravity in order to officially be in space. Gravity is the first thing a rocket must overcome to reach space.
I hope this helped!
I am, yours most sincerely,
SuperHelperThingy