At an optimum pH of 7.0, there are more molecules per minute in all amounts of substrate thus this pH is ideal for maximum growth. 5. Enzymes function most efficiently at the temperature of a typical cell, which is 37 degrees Celsius. Increases or decreases in temperature can significantly lower the reaction rate.
Answer : The correct option is, (b) 22.5 M
Explanation : Given,
Mass of calcium nitrate tetrahydrate = 266 g
Molar mass of calcium nitrate tetrahydrate = 236.15 g/mole
Volume of solution = 
Molarity : It is defined as the moles of solute present in one liter of solution.
Formula used :

Now put all the given values in this formula, we get:

As calcium nitrate tetrahydrate dissociate to give 1 mole of calcium ion, 2 moles of nitrate ion and 4 moles of water.
The concentration of nitrate ion = 
Thus, the concentration of nitrate ion is, 22.5 M
Your balanced equation for this reaction is:
HCOOH (aq) + H2O (aq) → HCOO- (aq) + H3O+ (aq)
So from the reaction, we can see when formic acid dissolved in water so H3O+ ions will be formed.
and we can see that it is a balanced equation as:
we have H atoms = 4 on both sides of the reaction
and C atoms = 1 atom on both sides of the reaction
and O atoms = 3 atoms on both sides of the reaction
So it is our final balanced equation of the reaction.
Answer:

<h3>Saponification is a process that involves conversion of fat, oil or lipid into soap and alcohol by the action of heat in the presence of aqueous alkali. Soaps are salts of fatty acids and fatty acids are monocarboxylic acids that have long carbon chains e.g. sodium palmitate.</h3>