Answer:
37.725 A
Explanation:
B = magnitude of the magnetic field produced by the electric wire = 0.503 x 10⁻⁴ T
r = distance from the wire where the magnetic field is noted = 15 cm = 0.15 m
i = magnitude of current flowing through the wire = ?
Magnetic field by a long wire is given as

Inserting the values

i = 37.725 A
Answer:
437.5Kjoules
Explanation:
K.E=half multiply by mass multiply by square of velocity
=437.5Kjoules
Answer:
D, if the sun was removed, all the planets would go flying off into space.
Explanation:
Answer:
t = 0.354 hours
Explanation:
given,
coefficient of rolling friction μr=0.002
mass of locomotive = 180,000 Kg
rolling speed = 25 m/s
The force of friction = μ mg
= (.002) x (180000) x (9.8)
= 3528 N
F = m a
now,
m a = 3528 N
180000 x a = 3528
a = 0.0196 m/s²
Then apply
v = u + at
0 = 25 - 0.0196 x t
t = 1275.51 sec
t = 1275.61/3600 hours
t = 0.354 hours
time taken by the locomotive to stop = t = 0.354 hours
Answer:
Producing 300 L of ethanol from potatoes
Explanation:
From the diagram, one liter of ethanol production from sugar cane requires 2000 liters of water. Hence, in order to produce 100 L of ethanol from sugar cane, 2000 x 100 = 200,000 L of water.
1000 liters of water is needed to produce 1 liter of ethanol from sugar beet. Hence, 200 x 1000 = 200,000 L of water will be needed to produce 200 liters of ethanol.
1000 liters of water is also required to produce 1 liter of ethanol from potatoes, hence, 300 x 1000 = 300,000 L of water would be required to produce 300 L of ethanol from the same material
About 500 liters of water is required to produce 1 liter of ethanol from corn, hence, 400 x 500 = 200,000 L of water would be needed to produce 400 L of ethanol from corn.
<u>In conclusion, producing 300 L of ethanol from potatoes would require using the most water among all the options.</u>