Answer:
D) 1.04 Btu/s from the liquid to the surroundings.
Explanation:
Given that:
flow rate (m) = 2 lb/s
liquid specific enthalpy at the inlet (
Btu/lb)
liquid specific enthalpy at the exit (
Btu/lb)
initial elevation (
)
final elevation (
)
acceleration due to gravity (g) = 32.174 ft/s²
= 3 Btu/s
The energy balance equation is given as:
![Q_{cv}-W{cv}+m[(h_1-h_2)+(\frac{V_1^2-V_2^2}{2})+g(z_1-z_2)]=0](https://tex.z-dn.net/?f=Q_%7Bcv%7D-W%7Bcv%7D%2Bm%5B%28h_1-h_2%29%2B%28%5Cfrac%7BV_1%5E2-V_2%5E2%7D%7B2%7D%29%2Bg%28z_1-z_2%29%5D%3D0)
Since kinetic energy effects are negligible, the equation becomes:
![Q_{cv}-W{cv}+m[(h_1-h_2)+g(z_1-z_2)]=0](https://tex.z-dn.net/?f=Q_%7Bcv%7D-W%7Bcv%7D%2Bm%5B%28h_1-h_2%29%2Bg%28z_1-z_2%29%5D%3D0)
Substituting values:
![Q_{cv}-(-3)+2[(40.09-40.94)+\frac{32.174(0-100)}{778*32.174} ]=0\\Q_{cv}+3+2[-0.85-0.1285 ]=0\\Q_{cv}+3+2(-0.9785)=0\\Q_{cv}+3-1.957=0\\Q_{cv}+1.04=0\\Q_{cv}=-1.04\\](https://tex.z-dn.net/?f=Q_%7Bcv%7D-%28-3%29%2B2%5B%2840.09-40.94%29%2B%5Cfrac%7B32.174%280-100%29%7D%7B778%2A32.174%7D%20%5D%3D0%5C%5CQ_%7Bcv%7D%2B3%2B2%5B-0.85-0.1285%20%5D%3D0%5C%5CQ_%7Bcv%7D%2B3%2B2%28-0.9785%29%3D0%5C%5CQ_%7Bcv%7D%2B3-1.957%3D0%5C%5CQ_%7Bcv%7D%2B1.04%3D0%5C%5CQ_%7Bcv%7D%3D-1.04%5C%5C)
The heat transfer rate is 1.04 Btu/s from the liquid to the surroundings.
I believe the amount of arable land worldwide is 1/3 as a fraction.
Answer:
The temperature of the strip as it exits the furnace is 819.15 °C
Explanation:
The characteristic length of the strip is given by;

The Biot number is given as;

< 0.1, thus apply lumped system approximation to determine the constant time for the process;

The time for the heating process is given as;

Apply the lumped system approximation relation to determine the temperature of the strip as it exits the furnace;

Therefore, the temperature of the strip as it exits the furnace is 819.15 °C
Answer:
e.Fire resistance,Inexpensive,Non-toxic.
Explanation:
Desirable hydraulic property of fluid as follows
1. Good chemical and environment stability
2. Low density
3. Ideal viscosity
4. Fire resistance
5. Better heat dissipation
6. Low flammability
7. Good lubrication capability
8. Low volatility
9. Foam resistance
10. Non-toxic
11. Inexpensive
12. Demulsibility
13. Incompressibility
So our option e is right.