Answer:
pH = 10.11
Explanation:
Hello there!
In this case, since it is possible to realize that this base is able to acquire one hydrogen atom from the water:

We can therefore set up the corresponding equilibrium expression:
![Kb=\frac{[C_{18}H_{21}NO_4H^+][OH^-]}{[C_{18}H_{21}NO_4]}](https://tex.z-dn.net/?f=Kb%3D%5Cfrac%7B%5BC_%7B18%7DH_%7B21%7DNO_4H%5E%2B%5D%5BOH%5E-%5D%7D%7B%5BC_%7B18%7DH_%7B21%7DNO_4%5D%7D)
Which can be written in terms of the reaction extent,
:

Thus, by solving for
we obtain:

However, since negative solutions are now allowed, we infer the correct
is 0.0001285 M; thus, the pOH can be computed:

And finally the pH:

Best regards!
Answer:
Uhhhh I think this is it
Explanation:
Some changes to total pressure, like adding an inert gas that is not part of the equilibrium, will change the total pressure but not the partial pressures of the gases in the equilibrium constant expression. Thus, addition of a gas not involved in the equilibrium will not perturb the equilibrium.
Solubility and temperatures are directly related. The higher the temperature of the solvent, the higher the solubility of the solute in the solvent.
Dissolving a solute in a solvent is an endothermic process hence providing heat favors the process. Higher temperatures cause the molecules of the solvent to have high kinetic energy hence bombard each other and with that of the solute with high frequency. This then ensures fast diffusion of the solute particles in the solvent.
After some thinking I have come to the conclusion that the answer is C.