<h3>
Answer:</h3>
Anion present- Iodide ion (I⁻)
Net ionic equation- Ag⁺(aq) + I⁻(aq) → AgI(s)
<h3>
Explanation:</h3>
In order to answer the question, we need to have an understanding of insoluble salts or precipitates formed by silver metal.
Additionally we need to know the color of the precipitates.
Some of insoluble salts of silver and their color include;
- Silver chloride (AgCl) - white color
- Silver bromide (AgBr)- Pale cream color
- Silver Iodide (AgI) - Yellow color
- Silver hydroxide (Ag(OH)- Brown color
With that information we can identify the precipitate of silver formed and identify the anion present in the sample.
- The color of the precipitate formed upon addition of AgNO₃ is yellow, this means the precipitate formed was AgI.
- Therefore, the anion that was present in the sample was iodide ion (I⁻).
- Thus, the corresponding net ionic equation will be;
Ag⁺(aq) + I⁻(aq) → AgI(s)
Using off road vehicles does help contribute to the process of erosion.
Answer:
The heat that was used to melt the 15.0 grams of ice at 0°C is 4,950 Joules
Explanation:
The mass of ice in the beaker = 15.0 grams
The initial temperature of the ice = 0°C
The final temperature of the ice = 0°C
The latent heat of fusion of ice = 330 J/g
The heat required to melt a given mass of ice = The mass of the ice to be melted × The latent heat of fusion of ice
Therefore, the heat, Q, required to melt 15.0 g of ice = 15.0 g × 330 J/g = 4,950 J
The heat that was used to melt the 15.0 grams of ice = 4,950 Joules.