Answer:
the electroscope separate by the presence of charge carriers
Explanation:
Metal bodies are characterized by having free (mobile) electrons. In the electroscope the plates are in balance; when the external metal ball is touched, a charge is introduced into the device, when the body that touched the ball is separated, an excess charge remains. This charge, being a metal, is distributed over the entire surface, giving a uniform density and an electric force of repulsion is created between the two charged sheets, which tends to separate the sheets. This force is counteracted by the tension component as the sheets are separated at a given angle, the separation reaches the point where
Fe - Tx = 0
Fe = Tx
In summary, the electroscope separate its leaves by the presence of charge carriers
Answer:
A - elastic since many other fast food items could be considered close substitutes.
Explanation:
The price elasticity of demand is how much the demand of the Big Macs will change due to a 1% change in price. Should the elasticity be greater than 1, the Big Macs will be elastic. Should it be less than 1, the Big Macs are inelastic.
Demand elasticity is calculated as the percentage change in quantity demanded divided by a percentage change in price.
Since Big Macs are (i) a luxury good, and (ii) have close substitutes (other burgers available at McDonalds and other fast food stores), we will say their elasticity is greater than 1.
This means that the demand of Big Macs will change due to a 1% increase in price due to the presence of close substitutes.
Answer:
Part a)

Part b)

Explanation:
Part a)
As we know that orbital velocity at certain height from the surface of Earth is given as

here we know that



now we have


Part b)
When a loose rivet is moving in same orbit but at 90 degree with the previous orbit path then in that case the relative speed of the rivet with respect to the satellite is given as

Answer:
1.33
Explanation:
speed of light in vacuum, c = 3 x 10^8 m/s
speed of light in medium, v = 2.26 x 10^8 m/s
The refractive index of the medium is given by
μ = speed of light in vacuum / speed of light in medium
μ = (3 x 10^8) / (2.26 x 10^8)
μ = 1.33
Answer:
-32.5 * 10^-5 J
Explanation:
The potential energy of this system of charges is;
Ue = kq1q2/r
Where;
k is the Coulumb's constant
q1 and q2 are the magnitudes of the charges
r is the distance of separation between the charges
Substituting values;
Ue = 9.0×10^9 N⋅m2/C2 * 5.5 x 10^-8 C *( -2.3 x10^-8) C/(3.5 * 10^-2)
Ue= -32.5 * 10^-5 J